UPV



Puentes de acero inoxidable

Harry Brearley (1871-1948)

El acero inoxidable, inventado en la primera década del siglo XX por Harry Brarley, presenta características de resistencia a la corrosión que los diferencia de los aceros convencionales al carbono. Estos aceros presentan un contenido mínimo de un 11% de cromo, aunque suele añadírsele también níquel. El acero inoxidable no es un material desconocido, aunque como se verá a continuación, ha sido poco empleado en obras civiles. Se puede encontrar en usos domésticos o en amplios usos industriales como plantas químicas, componentes de automoción o aeronáutica. Baddoo (2008) indica que el consumo mundial de acero inoxidable ha crecido al 5% anual durante los últimos 20 años, sobrepasando el crecimiento de otro tipo de materiales. Respecto a los últimos adelantos en los aceros inoxidables en cuanto a material, se recomienda la revisión realizada por Lo et al. (2009).

No sólo el aspecto estético, sino la facilidad del mantenimiento, es la que ha hecho de este material un referente en la arquitectura en aspectos no relacionados directamente con la resistencia estructural. Resulta curiosa la falta de experiencia y realizaciones con este material en el ámbito de la ingeniería civil, y en especial, de las estructuras como los puentes (aunque algunos pueden citarse en España, como el de Abandoibarra en Bilbao o el de Cala Galdana en Menorca). Y eso que determinados puentes, especialmente los situados en zonas costeras, presentan una degradación extraordinaria y unos costes de mantenimiento elevados (Cramer et al., 2002). Una revisión de la aplicación de los nuevos materiales en la ingeniería civil puede verse en el trabajo de Flaga (2000).

Pasarela de Abandoibarra. Bilbao (1996).

La falta de experiencia en el uso del acero inoxidable en su aspecto estructural deriva, tal y como indican Real y Mirambell (2000), de una falta de especificaciones de diseño que fomenten el uso de este material. Esta es, quizás, una de las limitaciones técnicas más importantes existentes en la actualidad. En efecto, una de las claves que diferencian al acero inoxidable del convencional es la no linealidad de su ecuación constitutiva, incluso a bajos niveles de tensión, así como una pronunciada respuesta al trabajo en frío. De hecho, el límite elástico de estos aceros no está bien definido, debiéndose asociar al 0,2% de su deformación (Gedge, 2008). Hoy día estos aceros son de gran interés, incluso en el campo del hormigón estructural, donde, tal y como indican Cobos et al. (2011), un incremento del 10% en el coste inicial en la construcción de un puente de hormigón estructural con armaduras inoxidables puede elevar a más de 120 años la vida útil en servicio en zonas costeras, altamente corrosivas. Pérez-González (2008) refiere al uso del acero inoxidable procedente de desecho como armaduras para losas de hormigón.

Loa aceros inoxidables pueden dividirse según su estructura metalúrgica en austeníticos, ferríticos, martensínicos, dúplex y de precipitación-endurecimiento. De ellos, los austeníticos y los dúplex son los más empleados en estructuras. En ellos, los niveles de resistencia aumentan con el trabajado en frío, si bien se reduce la ductibilidad. Una de las características más interesantes es la resistencia a la corrosión bajo tensión, típica de las estructuras sometidas a factores ambientales, siendo los aceros dúplex normalmente mejores que los austeníticos. Es por ello que el acero dúplex es el idóneo para su uso en puentes y pasarelas (ver Sobrino, 2006). Sin embargo, dentro de esta familia de aceros, el tipo idóneo de acero dúplex dependerá de las condiciones ambientales específicas, propiedades mecánicas necesarias, acabado superficial, etc. Por ejemplo, en la construcción del puente de Cala Galdana de Menorca, se utilizó un acero inoxidable dúplex tipo 1.4462. Baddo y Kosmac (2011) se refieren al acero dúplex como el idóneo en la construcción de puentes, especialmente los 1.4462, 1.4362 y 1.4162, según la nomenclatura EN 10088-4 (2009).

Puente de Cala Galdana, Menorca (vía puentemanía.com)

Un referente reciente respecto al diseño con acero inoxidable estructural es el manual realizado por Euro Inox y el Steel Construction Institute (2006), ahora en su tercera edición. Este manual presenta recomendaciones basadas en el método de los estados límite y, donde se considera adecuado, en el Eurocódigo 3 Proyecto de estructuras de acero. Este manual presenta una interesante Parte II donde se muestran ejemplos de dimensionamiento. Sin embargo, la actual Instrucción de Acero Estructural EAE (Ministerio de Fomento, 2011), en su Artículo 2 de ámbito de aplicación, excluye los aceros inoxidables, lo cual mantenía cierto impedimento a la extensión del uso de este material. Afortunadamente, en diciembre de 2012 salió a la luz la norma UNE-EN 1993-1-4 (Eurocódigo 3 – Proyecto de estructuras de acero, Parte 1-4 Reglas generales – Reglas adicionales para los Aceros Inoxidables).

Otra de las consideraciones de especial relevancia con respecto a los aceros inoxidables se refiere a los procesos constructivos y de montaje de estas estructuras cuando se comparan con los aceros convencionales. De hecho, las técnicas de corte, doblado, soldeo o acabado son distintas a las habituales. Así, los aceros dúplex presentan cierta dificultad añadida en relación con la realización de soldaduras. Además, para evitar la corrosión galvánica, los aceros inoxidables no deben entrar en contacto con otro tipo de metales.

Gate Arch de Missouri

La revisión realizada por Gedge (2008) respecto a los usos actuales que tiene el acero estructural en la construcción y en la ingeniería civil deja a las claras que, si bien no existe una gran tradición constructora con este tipo de material, también es cierto que las mayores exigencias relacionadas con la durabilidad de los materiales y la vida útil de las estructuras están reconsiderando al alza el uso de este material. Otra revisión del estado del conocimiento muy actual es la realizada por Baddoo (2008), en la que se centra no sólo en los aspectos de fabricación del material, sino en otros como el diseño y las realizaciones. El Gateway Arch de Missouri inspiró gran parte de la investigación del comportamiento structural del acero inoxidable en los primeros años de la década de los 60, de modo que la primera norma sobre este material estructural se publicó en 1968 por el AISI (1968).

La experiencia en el uso del acero inoxidable en puentes y pasarelas va en aumento, no sólo en España, sino a nivel internacional. En la publicación de Baddo y Kosmac podemos encontrar 20 puentes construidos con acero inoxidable desde el año 1999 al año 2011, lo cual son cifras pequeñas, pero ya significativas. A este respecto, hay que señalar que, en el año 2003, se realizó la sustitución de los tirantes de un puente arco ferroviario de tablero colgado en Kungälv, Suecia, con acero inoxidable Duplex 1.4462. Este puente se construyó en 1995 y tuvo que realizarse la sustitución en el año 2003 (Baddo y Kosmac, 2011). Baddo (2008) también se refiere al recubrimiento usado en el puente colgante de Tsing Ma Bridge de Hong Kong, siendo éste un puente usado tanto para el tráfico rodado como para el ferroviario. También en Hong Kong se ha utilizado el acero inoxidable Duplex para realizar las torres de puente colgante de Stonecutters, pues su altura superior a 120 m dificultaría el mantenimiento posterior (Hui y Wong, 2007). Por tanto, si bien es cierto que no se ha encontrado un puente ferroviario “íntegramente” construido con acero inoxidable, también es cierto que este material se ha usado ya como parte integrante en este tipo de puentes.

Tsing Ma Bridge de Hong Kong

En cuanto al diseño de puentes de ferrocarril, ésta ha cambiado profundamente en las últimas tres décadas, sobre todo con el empleo de potentes herramientas de cálculo, tanto en hardware como en software (Sobrino y Gómez, 2004). El cálculo de puentes ferroviarios presenta peculiaridades como las elevadas sobrecargas, con trenes que pueden circular a velocidades muy elevadas, requerimientos de elevada rigidez estructural para garantizar la comodidad al usuario y reducir el mantenimiento de la vía, problemas de fatiga, fenómenos de interacción vía-tablero, efectos térmicos, etc. En España es reseñable el primer puente ferroviario realizado en acero inoxidable, instalado en la zona de Añorga Txiki de San Sebastión, en el tramo Añorga-Rekalde.

Referencias:

  • AMERICAN IRON AND STEEL INSTITUTE (1968). Specification for the Design of Light Gauge Cold-Formed Stainless Steel Structural Members.
  • ARCELORMITTAL. Stainless steel in bridges and footbridges. http://www.constructalia.com/english/publications/technical_guides/stainless_steel_in_bridges_and_footbridges
  • AZUMA, S.; OGAWA, K. (1998). Duplex stainless steel excellent in corrosion resistance, Applied Thermal Engineering 18(6): XXIV.
  • BADDO, N.R. (2008). Stainless steel in construction: A review of research, applications, challenges and opportunities. Journal of Constructional Steel Research, 64:1199-1206.
  • BADDOO, N.R.; KOSMAC, A. (2011) Sustainable duplex stainless steel bridges. http://www.worldstainless.org/ISSF/Files/Sustainable%20Duplex%20Stainless%20Steel%20Bridges.pdf
  • BELETSKI, A. (2008). Applicability of stainless steel in road infrastructure bridges by applying life cycle costing. Masters Thesis, Helsinki University of Technology.
  • COBO, A.; BASTIDAS, D.M.; GONZÁLEZ, M.N.; MEDINA, E.; BASTIDAS, J.M. (2011). Ductibilidad del acero inoxidable bajo en níquel para estructuras de hormigón armado. Materiales de Construcción, 61(304): 613-620.
  • CRAMER, S.D. et al. (2002). Corrosion prevention and remediation strategies for reinforced concrete coastal bridges. Cement & Concrete Composites, 24:101-117.
  • EN 10088-4 (2009). Stainless steels. Technical delivery conditions for sheet/plate and strip of corrosion resisting steels for construction purposes.
  • EURO INOX (2005). Puentes peatonales en acero inoxidable. Serie Construcción, Vol. 7. ISBN: 2-87997-101-2.
  • EURO INOX (2007). Puente en Cala Galdana, Menorca. www.euro-inox.org
  • EURO INOX; THE STEEL CONSTRUCTION INSTITUTE (2006). Manual de diseño para acero inoxidable estructural. Tercera edición. Serie de construcción, vol. 11, Luxemburgo, Londres. ISBN 2-87997-207-8.
  • FERNÁNDEZ-ORDOÑEZ, J.A. (1996). La nueva pasarela de Abandoibarra. Revista de Obras Públicas, 3353:37-49.
  • FLAGA, K. (2000). Advances in materials applied in civil engineering. Journal of Materials Processing Technology, 106: 173-183.
  • GEDGE, G. (2008). Structural uses of stainless steel-buildings and civil engineering. Journal of Constructional Steel Research, 64:1194-1198.
  • HUI, M.C.H.; WONG, C.K.P. (2007). Stonecutters Bridge – durability, maintenance and safety considerations. Structure and Infrastructure Engineering, 5(3):229-243.
  • LO, K.H.; SHEK, C.H.; LAI, J.K.L. (2009). Recent developments in stainless steels. Material Science and Engineering R, 65:39-104.
  • MINISTERIO DE FOMENTO (2011). EAE Instrucción de Acero Estructural. Secretaría General Técnica.
  • MUÑOZ, E.; DAZA, R.D.; SALAZAR, F. (2002). Metodología de evaluación estructural de puentes metálicos por técnicas de fiabilidad estructural. Revista Ingeniería de Construcción, 17(1):44-52.
  • PASCUAL, J.; RIPA, T.; MILLANES, F. (2004). Algunas singularidades del acero inoxidable como material estructural. Congreso de la estructura de acero CEA 2004, La Coruña, pp. 220-238.
  • PÉREZ-GONZÁLEZ, J.A. (2008). Losas de concreto reforzadas con acero inoxidable de desecho. Revista Ingeniería de la Construcción, 23(2):72-81.
  • REAL, E.; MIRAMBELL, E. (2000). Estudio experimental del comportamiento a flexión de vigas de acero inoxidable. Hormigón y Acero, 216: 75-85.
  • REAL, E.; MIRAMBELL, E. (2005). Flexural behaviour of stainless steel beams. Engineering Structures, 27:1465-1475.
  • SOBRINO, J.A. (2006). Puente de acero inoxidable en Cala Galdana (Menorca). Revista de Obras Públicas, 3463:11-24.
  • SOBRINO, J.A.; GÓMEZ, M.D. (2004). Aspectos significativos de cálculo en el proyecto de puentes de ferrocarril. Revista de Obras Públicas, 3445:7-18.

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

21 Agosto, 2017
 
|   Etiquetas: ,  ,  |  

Nomenclatura de los cables de acero

65373-5892361Los cables se describen mediante tres números o grupos de números que representan los elementos que lo componen:

(nº de cordones) x (nº de alambres/cordón) + (notación del alma)

Tras el número total de alambres del cordón, se indica la disposición de éstos en distintas capas, y seguidamente, su denominación correspondiente: Seale, alambre de relleno, cordones triangulares, etc. Con cordones ordinarios no es necesaria dicha aclaración, pues lo alambres presentan el mismo diámetro, siendo el número de alambres de las capas sucesivas una progresión aritmética de razón 6.

Si el alma es textil se designa escribiendo +1. En cambio, si el alma es metálica pero de la misma composición que los demás cordones, se anota +0.

f 148

6 x 37 +1 Normal

 

6 x 19(1+9+9) +1 Seale

6 x 19(1+9+9) +1 Seale

 

Si el alma es metálica y de distinta composición que los demás cordones, para designarla se emplea la misma nomenclatura que para un cable.

6 x 25 [1+(6+6)+12] + (7 x 7 +0) Relleno

6 x 25 [1+(6+6)+12] + (7 x 7 +0) Relleno

12 x 7 +(7 x 7 +0) Normal

12 x 7 +(7 x 7 +0) Normal

Referencia:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

18 Agosto, 2017
 
|   Etiquetas: ,  ,  |  

El cable de acero

comp_6x19_1_alma_textilUn cable es un conjunto de alambres trenzados según una cierta ley, que en todas sus fases de trabajo se comporta como un elemento unidad. Los cables forman una parte muy importante de determinadas máquinas empleadas en la construcción como las dragalinas, los blondines, los planos inclinados o la excavadora de cables.

Estructura de un cable.

Elementos que componen un cable:

  • Alambres: son los elementos básicos que constituyen el cable. Son de acero de alta resistencia mecánica, que oscila entre los 1 y los 2 kN/mm2.
  • Cordón: es un conjunto formado por una serie de alambres arrollados en una capa; en algunos casos, van arrollados alrededor de otro alambre que hace de base de apoyo, llamado alambre central.
  • Alma: es el elemento central del cable y sirve de base o soporte para los cordones que lo envuelven, sirviendo a la vez de almacén de grasa para su lubricación. El alma puede ser tanto de acero como de fibra textil, pero lo que se gana en resistencia con el acero se pierde en flexibilidad.
Cable

Composición de un cable

Tipos de arrollamientos.

Se denomina arrollamiento a la forma en la que se disponen los alambres en los cordones y los cordones en el cable. Se definen los siguientes tipos:

  • Cruzado: los cordones que forman el cable están arrollados en sentido contrario al de los alambres que forman los cordones. Son los más utilizados cuando los extremos giran libremente. Se manejan fácilmente, pues no tienden a descablearse; además son resistentes al aplastamiento y a las deformaciones. Son poco resistentes al desgaste.
  • Lang: los cordones y los alambres están arrollados en el mismo sentido. Este cable es muy resistente a la abrasión y al desgaste y puede tener una gran flexibilidad (más que el anterior) siempre y cuando se realice un amarre muy cuidadoso de los extremos debido al elevado momento de giro producido al cargar el cable.
  • Antigiratorio o alternado: estos cables están formados por dos o más capas de cordones, arrollados en sentidos diferentes. Así, los cordones compensan esfuerzos y eliminan la tendencia a girar sobre sí mismos, debido a la tensión ejercida por la carga suspendida. En las grúas torre se emplea como cable de elevación. Tiene la desventaja de que necesita el oxicorte para ser cortado, ya que cizallado sólo consigue desmontarlo.

arrollamientos cable

 

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

 

 

16 Agosto, 2017
 
|   Etiquetas: ,  ,  ,  ,  |  

La compactación de las mezclas asfálticas

Imagea36

Una de las tareas más delicadas e importantes de la puesta en obra del aglomerado asfáltico es su compactación, pues de ella depende en gran parte la calidad final del firme. Se trata de alcanzar una alta densidad que garantice la durabilidad prevista e impida irregularidades superficiales. La compactación debe llegar a la densificación marcada por el Pliego de Prescripciones Técnicas Particulares, normalmente entre el 95 y 98 % de la densidad Marshall de referencia, todo ello conservando la geometría superficial dada por la extendedora.

La compactación se realizará siempre que la trabajabilidad de la mezcla sea la suficiente. En las mezclas en caliente se debe comenzar a compactar con la temperatura más alta posible (superior a 120ºC), siempre que se pueda soportar la carga del compactador sin arrollamientos ni agrietamientos. En frío debe existir la suficiente presencia de fluidificantes en las mezclas abiertas o de la propia agua de la emulsión en las mezclas densas.

Los factores que influyen en la compactación de un aglomerado asfáltico son, entre otros, los siguientes:

  • Tipo de firme: Cada tipo de mezcla presentará diferente dificultad para ser compactado, por ejemplo, la fracturación, tamaño y forma de los áridos.
  • Acabado superficial: Según la calidad del acabado requerido la compactación deberá realizarse de forma diferente.
  • Contenido de betún: El betún actúa como lubricante entre las partículas, aunque no debería ser excesivo para evitar la inestabilidad de la mezcla.
  • Proporción y tipo de fíller: A mayor contenido de fíller, mayor dificultad de compactación, puesto que actúa como estabilizante del betún.
  • Espesor de capa: Si bien un mayor espesor de capa produce más rendimiento, el espesor suele estar marcado por el proyecto.
  • Temperatura: La temperatura de compactación de la mezcla en caliente siempre es muy superior a la del ambiente, por lo que se enfría rápidamente, impidiendo la compactación posterior. Pero tampoco es acertado pasarse en temperatura, pues provoca la inestabilidad de la mezcla. Se pueden dar los siguientes valores a efectos prácticos:
    • Temperatura a la salida de la planta              135 – 180º
    • Temperatura a la salida de la extendedora    120 – 150º
    • Temperatura durante la compactación          85 – 150º

La primera compactación la realiza la propia extendedora, llegando con su vibración a conseguir un 80% de la densidad teórica Marshall. Aunque esta cifra parece elevada, es lo suficientemente baja como para tener que compactar con maquinaria específica.

Las primeras zonas a compactar son las juntas transversales, las longitudinales y el borde exterior, por este orden. En el caso de las transversales la compactación se realiza perpendicularmente al eje de la calzada. Una vez compactadas juntas y borde, la compactación de la calle se iniciará por la zona más baja progresando hacia la más alta mediante solapes de las sucesivas pasadas. En zonas de difícil acceso, hay que emplear pequeños compactadores mecánicos o incluso pisones manuales.

En cuanto al tipo de compactador necesario, éste dependerá del tipo de mezcla y su espesor. En algunos casos se exige un tramo de prueba que determine las características de los compactadores y el número de pasadas necesario. Lo habitual es el uso de compactadores de neumáticos con alta o media presión y rodillos lisos con o sin vibración.

La compactación se realiza normalmente combinando diferentes equipos. Lo más habitual es combinar un compactador de neumáticos, que cierra la mezcla por efecto de amasado, y un compactador de llanta metálica, que corrige las posibles marcas o roderas del anterior equipo. También es muy útil el uso de rodillos mixtos neumáticos-vibrantes que reúnen las ventajas de ambas máquinas.

logotipo_pavimentacion-y-asfalto_compactadores-neumaticos

Los compactadores de rodillo liso sin vibración sólo se emplean en mezclas de pequeño espesor para dar un buen acabado superficial, siempre que se hayan utilizado previamente compactadores de neumáticos. Deben ser compactadores ligeros y con baja presión lineal. Suelen ser compactadoras vibratorias tándem de 8 a 18 t que trabajan sin vibración.

Con los compactadores de neumáticos se debe trabajar con presiones no muy elevadas al principio para acabar la compactación con mayores presiones. Además, tendrán ruedas lisas, en número, tamaño y disposición que permitan el solape de las ruedas delanteras y trasera, con faldones de lona protectores para evitar el enfriamiento de los neumáticos. La compactación dependerá de la carga total por rueda, de la presión y rigidez del neumático, lo cual provoca la presión de contacto. Existe un efecto de amasado y el efecto compactador en profundidad es mayor que el de rodillos metálicos.

Los compactadores vibratorios se usan ampliamente, excepto para capas delgadas, combinando adecuadamente las amplitudes y frecuencias. Estos compactadores trabajan a frecuencias mayores que los usados en suelos, por encima de las 2000 r.p.m., del orden de 2500 a 3000 r.p.m., pues si son inferiores su eficacia baja mucho; con masas excéntricas más pequeñas para cumplir las exigencias de terminación y compactación. Las primeras pasadas suelen realizarse a frecuencias bajas. Para capas gruesas suelen emplearse amplitudes altas y frecuencias bajas y para las capas delgadas lo contrario.

A continuación os dejo un vídeo del profesor Miguel Ángel del Val, de la Universidad Politécnica de Madrid, donde se explica la compactación de las mezclas asfálticas. Espero que os sea de utilidad.

Referencias:

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

14 Agosto, 2017
 
|   Etiquetas: ,  |  

El cable-grúa o blondín

BLONDINTambién denominado como cable-grúa, grúa funicular o andarivel, es una instalación similar a los puentes-grúa donde la viga-puente se reemplaza por un cable portante sobre el que se desliza el carretón del que se suspende la carga. Tanto el accionamiento del carretón como los movimientos de izado o descenso se consiguen mediante cables que se manejan desde el suelo. Su aplicación es habitual en la construcción de presas, puentes, astilleros, etc. El nombre de “blondin” viene del funámbuloy acróbata francés Jean François Gravelet-Blondin ( 1824-1897).

Esquema de funcionamiento del blondín

Esquema de funcionamiento del blondín

Se distinguen los siguientes cables en el blondín:

  • Cable vía o cable carril: cable atirantado sobre el que se desplaza el carretón o bicicleta. Está fijo a dos mástiles o torres, actuando a modo de dintel de pórtico.
  • Cable tractor o de vaivén: es el que desplaza al carretón.
  • Cable elevador: sirve para el izado de la carga, fijando la posición vertical del gancho.
Sistema de cables del blondín

Sistema de cables del blondín

Los tipos de blondines más habituales, en función de los grados de libertad de los soportes, son los siguientes:

  • Fijos: si los mástiles son completamente inmóviles.
  • Basculantes: cuando un mástil es fijo y el otro abatible alrededor de la base.
  • Radiales: con un mástil fijo y el otro desplazable sobre carriles.
  • Paralelos: si los dos mástiles pueden deslizarse paralelamente sobre carriles.
Blondín de cable fijo

Blondín de cable fijo

Blondín de cable basculante

Blondín de cable basculante

Blondín de cable radial

Blondín de cable radial

Los blondines han permitido alcanzar luces que se aproximan a los 1000 m, y una capacidad de carga ha llegado a las 50 t. Sin embargo las características normales de estas instalaciones se recogen en la Tabla. Sin embargo, estos equipos requieren una instalación compleja y por tanto difícilmente amortizable si la obra no es de gran volumen.

Tabla.- Características normales de los blondines

Luz entre torres 300 – 1,000 m
Capacidad de carga 10 – 25 t
Altura de las torres 10 – 30 m
Velocidad de traslación del carretón 2 – 8 m/s
Velocidad de elevación del gancho 0.3 – 1.5 m/s
Velocidad de traslación de las torres 0.1 – 0.3 m/s

 

Os dejo un vídeo de un blondín usado en la construcción de la presa de Ibiur.

En este otro vídeo podéis ver cómo se vacía hormigón con un blondín.

Referencia:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

10 Agosto, 2017
 
|   Etiquetas: ,  ,  ,  |  

Fluido de perforación en la Perforación Horizontal Dirigida (PHD)

Fluido de perforación. Imágen de Catalana de Perforacions

Fluido de perforación. Imagen de Catalana de Perforacions

El procedimiento habitual es la perforación asistida con fluidos. En este caso, la cabeza se empuja por una sarta de perforación a través del terreno. El fluido se bombea por el interior de la tubería que forma la sarta de perforación y retorna por el espacio que existe entre la sarta y las paredes de la perforación, con el detritus correspondiente, por lo que debe reciclarse para volver a utilizarse. Hay máquinas autónomas que llevan consigo los tanques de mezcla y las bombas del fluido, aunque en otras son sistemas independientes.

El uso de la perforación con lodos es frecuente, pues además de contener las paredes, permite el transporte del detritus en suspensión al exterior, además de la lubricación y refrigeración de la cabeza de corte. Asimismo, estabilizan la perforación piloto hasta que se inicia su ensanche. Los fluidos de perforación suelen ser mezclas de bentonita y agua, aunque hoy existe una tendencia creciente en el uso de polímeros. Hay que prever en suelos porosos o fracturados una pérdida de fluidos significativa. Cuando se trata de perforar terrenos duros y roca, se pueden utilizar conjuntos de fondo, BHA (bottom hole assembly), que es la parte inferior de la sarta de perforación que se extiende desde un tricono de perforación al varillaje. El BHA se acciona mediante un motor de lodos, que utiliza la potencia hidráulica del fluido de perforación.

Central de tratamiento de lodos. Imagen de Catalana de Perforacions

Central de tratamiento de lodos. Imagen de Catalana de Perforacions

En el vídeo que os dejo a continuación se profundiza en el uso de los lodos como fluido de perforación. Espero que os sea de utilidad.

Referencias:

  • IbSTT Asociación Ibérica de Tecnología SIN Zanja (2013). Manual de Tecnologías Sin Zanja.
  • Yepes, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia, 89 pp.
  • Yepes, V. (2015). Aspectos generales de la perforación horizontal dirigida. Curso de Postgrado Especialista en Tecnologías Sin Zanja, Ref. M7-2, 10 pp.
8 Agosto, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  |  

¿Cómo se colocan las vías del tren?

A continuación os paso algunos vídeos donde podemos ver los procedimientos constructivos y la maquinaria específica necesaria para la colocación de las vías del tren. Espero que os gusten. Recomiendo la web tecnoloxia.org.

(más…)

29 Julio, 2017
 
|   Etiquetas: ,  ,  ,  ,  |  

Mezcladora Eirich para la fabricación de hormigón

principio-de-mezclado-y-mezcladora-intensiva-g

Mezcladora Eirich. http://www.lulaiberica.com/principio-de-mezclado-y-mezcladora-intensiva.php

La mezcladora intensiva Eirich reemplazó la mezcladora de artesa anular (1906) y la mezcladora planetaria (1924) y, a lo largo de su continuo desarrollo técnico, se ha convertido en sinónimo de óptima tecnología de mezclado. Las mezcladoras Eirich actuales comienzan a fabricarse en el año 1972 y constan de un plato de mezclado rotatorio en posición inclinada, una rascadora fija para el fondo y la pared, así como un agitador de giro rápido. Las mezcladoras de hasta 3 m3 cuentan con un solo dispositivo de mezclado móvil; en las mezcladoras mayores hay dos o tres agitadores. Con esta mezcladora, el rendimiento y la intensidad de la mezcla pueden ajustarse de manera independiente el uno de la otra, al contrario de lo que sucede con todos los demás sistemas de mezcla.

El principio de mezclado es único y característico: en el recipiente de mezclado, el material se transporta hacia arriba por medio del rozamiento de la pared y desde allí cae por gravedad hacia abajo. Con ayuda de la rascadora de la pared, el material se conduce hasta el agitador de giro rápido. En el tiempo en el que gira una vez el recipiente (unos pocos segundos) se voltea el 100% del material. El agitador puede alcanzar una velocidad perimetral de entre 2 y 40 m/s.

ban888667a1b20b12b0212

http://www.gebrauchtmischer.de/leistungen/index.html

Dependiendo del trabajo de mezclado, la mezcladora puede funcionar a contracorriente o en el mismo sentido. De hecho, con hormigones de gran calidad, la mayoría de las veces el recipiente de mezclado y el agitador circulan en la misma dirección ya que de este modo se puede aplicar el máximo de fuerzas de cizalla en el material.

La diferencia característica de estas mezcladoras radica en la separación entre el transporte del material y el proceso de mezclado. Esto anterior, permite variar mucho más la velocidad del dispositivo de mezclado y controlar perfectamente la aplicación de energía en la mezcla.

El tiempo de mezclado, el orden de introducción de los componentes, el porcentaje de llenado de la cuba y la velocidad de rotación de los útiles son factores que van a condicionar la homogeneidad de la mezcla. La medida de la potencia consumida por la mezcladora se utiliza generalmente como medida de calidad del hormigón obtenido.

Referencia:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València. 189 pp.

28 Julio, 2017
 
|   Etiquetas: ,  ,  ,  |  

Control de ejecución de muros de contención de hormigón armado

Os paso un Polimedia de la profesora Esther Valiente sobre la ejecución de muros de contención de hormigón armado. Espero que os guste.

También lo podéis ver en inglés:

 

Referencia:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. ISBN: 978-84-9048-457-9.

27 Julio, 2017
 
|   Etiquetas: ,  ,  ,  ,  |  

Muro de cribas o de jaula

Muro de cribas

Los muros de cribas o muros jaula son obras de contención constituidas por una serie de celdas rellenas de material granular, preferentemente compactado. Se trata de un muro realizado con piezas prefabricadas de hormigón, aunque también pueden ser de madera, que crean una red espacial que se rellena con suelo. El conjunto trabaja como muro de gravedad, y frente a muros de hormigón, precisa de una mayor base de apoyo.

Es un sistema simple de construir y mantener, utiliza el suelo en la mayor parte del volumen y los elementos prefabricados permiten un buen control de calidad. Sin embargo, precisa de un buen material granular, que sea autodrenante, es costoso cuando se construye un solo muro y no es apto para alturas superiores a 7 m. Generalmente se instalan en su intradós con pendiente, aunque puede ser vertical en aplicaciones de escasa altura.

Travesaños y largueros de un muro de cribas

Travesaños y largueros de un muro de cribas

Referencia:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. ISBN: 978-84-9048-457-9.

26 Julio, 2017
 
|   Etiquetas: ,  ,  ,  |  

Previous Posts

Universidad Politécnica de Valencia