UPV



EQUIPOS DE SONDEO Y PROCEDIMIENTOS DE MEJORA DE TERRENOS


Publicada By  V铆ctor Yepes Piqueras - EQUIPOS DE SONDEO Y PROCEDIMIENTOS DE MEJORA DE TERRENOS, M茅todos y equipos para la mejora del terreno, Tecnolog铆a para el control y abatimiento del nivel fre谩tico    

A la hora de realizar una excavaci贸n y conseguir estabilizar el suelo, aunque sea de forma provisional, una posibilidad consiste en congelar el suelo, especialmente cuando 茅stos son blandos y est谩n saturados. Ello permite disponer de una pared provisional que impide el desmoronamiento del terreno.

El estudio de la congelaci贸n artificial del suelo precisa conocimientos en relaci贸n con las t茅cnicas de congelaci贸n existentes, as铆 como de las propiedades t茅rmicas y geot茅cnicas del terreno. Como es f谩cil de entender, este procedimiento constructivo requiere la presencia de empresas altamente especializadas.

Fundamento te贸rico

La congelaci贸n del terreno con el fin de conseguir su estabilizaci贸n temporal es una t茅cnica antigua empleada ya en miner铆a desde mediados del siglo pasado. Se basa en la transformaci贸n del agua intersticial en hielo, que en ese estado act煤a como elemento aglutinante de las part铆culas que componen el suelo.

Se consiguen as铆 dos efectos, por una parte un aumento de la resistencia del terreno y por otra una completa impermeabilidad que facilita durante un tiempo las condiciones de excavaci贸n. Pero al mismo tiempo, tambi茅n se alteran otras condiciones geot茅cnicas que pueden afectar a estructuras contiguas a la obra, que en el proyecto previo han de ser estudiadas cuidadosamente.

 

Aplicabilidad

La congelaci贸n es adecuada en una gran variedad de suelos, incluso en casos donde las inyecciones y otros m茅todos no pueden ser utilizados. El requisito que plantea es la necesidad de que los suelos est茅n saturados de agua, ya que de lo contrario el m茅todo no mejora las caracter铆sticas del terreno.

 

Sistemas de congelaci贸n

El procedimiento general se aplica instalando en torno al bloque de suelo que se quiera estabilizar, un conjunto de tubos o sondas de congelaci贸n por las que habr谩 de circular la sustancia refrigerante, con la disposici贸n y separaci贸n entre sondas que aconsejen las condiciones de obra (profundidad de excavaci贸n, planta, etc.) y el terreno.

Como sustancias refrigerantes pueden emplearse salmueras (frecuentemente de cloruro c谩lcico), anh铆drido carb贸nico, o nitr贸geno l铆quido, todas ellas con el mismo fundamento f铆sico: la capacidad de absorci贸n de calor de estas sustancias, al pasar de l铆quido a gas.

La instalaci贸n es diferente, seg煤n el elemento refrigerante sea recuperado (circuito cerrado) o no (circuito abierto). En el primer caso, ha de establecerse un circuito cerrado como el que se muestra en la figura. El fluido en forma l铆quida, pasa por los tubos refrigerantes y al evaporarse a trav茅s de ellos absorbe calor铆as del terreno. Conseguido este efecto, la sustancia en forma de gas se hace pasar por un compresor que en combinaci贸n con un sistema refrigerador lo licua a baja temperatura, y despu茅s es conducida a un dep贸sito, en el que es almacenada en forma l铆quida a alta presi贸n. Desde este dep贸sito el caudal ser谩 bombeado de nuevo a las sondas refrigerantes para ser reutilizado en un nuevo recorrido a trav茅s del circuito cerrado de congelaci贸n.

Cuando la congelaci贸n se aplica sin recuperar la sustancia refrigerante, 茅sta (normalmente nitr贸geno l铆quido), es transportada a pi茅 de obra en camiones cisterna y desde ellos es bombeada a baja temperatura (禄 -196 潞C), directamente hacia las sondas o tubos congeladores de la instalaci贸n: el fluido, despu茅s de pasar a trav茅s de las sondas, ya evaporado es dirigido hasta el final del circuito, en este caso abierto, del cual sale a la atm贸sfera en forma de gas a unos -60 潞C de temperatura.

Este sistema resulta m谩s caro que el anterior por no recuperarse la sustancia refrigerante, pero los efectos de congelaci贸n que se consiguen en la pr谩ctica son m谩s r谩pidos.

 

Existe la opci贸n de utilizar un procedimiento mixto, consistente en combinar la capacidad frigor铆fica del nitr贸geno l铆quido, para efectuar la congelaci贸n del terreno de forma r谩pida, y la econom铆a de la salmuera, para el mantenimiento durante los trabajos de excavaci贸n y ejecuci贸n de la estructura. Para ello, los circuitos de sondas deben estar separados de forma que se puedan utilizar ambos procedimientos.

 

Condiciones de ejecuci贸n

La elecci贸n del procedimiento y medios de congelaci贸n m谩s efectivos, requiere el estudio del terreno y de la obra en tres etapas:

  • Estudio de viabilidad
  • Elecci贸n del sistema
  • Ejecuci贸n y control

 

El objeto del estudio de viabilidad es decidir en primer t茅rmino si la congelaci贸n es factible, con o sin medidas correctoras del terreno y en el primer caso definir qu茅 tipo de medidas deben adaptarse.

Como es l贸gico, es esencial partir de un buen conocimiento hidrogeol贸gico del terreno y de todo el entorno al que pueda afectar el proceso de congelaci贸n. En este estudio tienen especial inter茅s los par谩metros t茅rmicos del suelo, y los geot茅cnicos antes y despu茅s de la congelaci贸n, y en las situaciones intermedias.

Es importante conocer el volumen y las condiciones del agua que pueda estar en contacto con la masa congelada, por la aportaci贸n de calor que puede proporcionar y por los efectos producidos por la velocidad de circulaci贸n: a partir de velocidades de 1,5 – 2 m/d铆a si no es con nitr贸geno l铆quido la congelaci贸n no es factible; con velocidades mayores los tratamientos previos de inyecci贸n por su eficacia y por su escasa incidencia econ贸mica, pueden ser un buen medio corrector. En general los procesos de congelaci贸n son m谩s viables en suelos saturados pero tambi茅n son aplicables en suelos con grados muy bajos (10 %) de saturaci贸n.

Con las conclusiones del estudio de viabilidad debe decidirse el sistema de congelaci贸n y la forma y disposici贸n de los tubos que mejor se adapten a las condiciones del terreno y del espacio disponible. Si la obra lo permite, se suele recurrir a superficies cil铆ndricas (circulares o el铆pticas) para que los esfuerzos que se produzcan sobre el bloque congelado sean principalmente de compresi贸n.

El an谩lisis t茅rmico previo del bloque a congelar es esencial para decidir:

  • la disposici贸n m谩s favorable de las sondas
  • la potencia del equipo de congelaci贸n y
  • el tiempo de funcionamiento que es necesario para conseguir la temperatura de congelaci贸n prevista.

En este tratamiento es muy importante el control de temperaturas en el interior del suelo congelado mediante la disposici贸n de sondas termom茅tricas. As铆, puede controlarse c贸mo progresa la formaci贸n del muro, adem谩s de vigilar su evoluci贸n durante la fase de excavaci贸n, establecer los periodos de mantenimiento y fijar la potencia frigor铆fica necesaria en funci贸n de la respuesta t茅rmica del suelo y la transmisi贸n de calor a trav茅s del paramento excavado.

La resistencia de un suelo congelado est谩 definida como en cualquier otro, por la cohesi贸n y el 谩ngulo de rozamiento. Pero estos par谩metros en este caso, var铆an en funci贸n de la temperatura y del tiempo con leyes diferentes no s贸lo en funci贸n de la composici贸n del suelo sino tambi茅n de la duraci贸n de la carga aplicada.

Ventajas y limitaciones

Las ventajas del tratamiento de congelaci贸n del terreno radica en la posibilidad de ahorro de tiempo y de coste frente a problemas de presencia importante de agua en excavaciones bajo el nivel fre谩tico, adem谩s de en la amplia variedad de suelos donde puede aplicarse. Como limitaciones destacan la alta especializaci贸n que precisa su aplicaci贸n y su elevado coste, por lo que no es muy utilizado en Espa帽a.

Tambi茅n hay que apuntar como inconvenientes que, en el caso de gravas, con cierta velocidad del agua sub谩lvea, la congelaci贸n se hace complicada y necesitar铆a alguna inyecci贸n complementaria. Tampoco es despreciable el asiento producido tras la descongelaci贸n del suelo.

Referencias:

MART脥, J.V.; GONZ脕LEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcci贸n. Mejora de terrenos. Editorial de la Universidad Polit茅cnica de Valencia. Ref. 2004.844. Valencia, 52 pp.

MUZ脕S, F. (1980). El fr铆o, la helada, congelaci贸n de terrenos. Cap铆tulo 16 de Geotecnia y Cimientos III, de J.A. Jim茅nez Salas, Ed. Rueda.

MUZ脕S, F. (1980). 聽Congelaci贸n artificial del terreno. IV Curso sobre T茅cnicas de Mejora del Terreno. Valencia, 16 de octubre. (link)

 

17 julio, 2017
 

Publicada By  V铆ctor Yepes Piqueras - EQUIPOS DE SONDEO Y PROCEDIMIENTOS DE MEJORA DE TERRENOS, MAQUINARIA Y PROCEDIMIENTOS CONSTRUCTIVOS DE CIMENTACIONES Y ESTRUCTURAS, M茅todos y equipos para la mejora del terreno, Procedimientos constructivos de cimentaciones, sistemas de retenci贸n de tierras y anclajes, SEGURIDAD Y SALUD    

Micropilotes. http://www.civogal.com/

Los micropilotes son pilotes de peque帽o di谩metro de perforaci贸n (< 30cm) y se componen de una barra, tubo de acero o de armadura de acero que constituye el n煤cleo portante, el cual se recubre normalmente de lechada inyectada de cemento que forma el bulbo. Las caracter铆sticas t茅cnicas de los materiales y modo de ejecuci贸n de estos micropilotes permiten lograr altas capacidades de carga (30 a 150 t) tanto a la tracci贸n como a la compresi贸n con deformaciones m铆nimas. Se consigue as铆, un elemento resistente en el que predomina la longitud y resistencia por rozamiento o fuste.

En este post vamos a dejar un par de documentos relacionados realizados por el Comit茅 de Seguridad de AETESS con las medidas de seguridad a adoptar en la ejecuci贸n de esta unidad de obra. Se trata de la Gu铆a T茅cnica de Seguridad AETESS para Micropilotes y Anclajes de la Asociaci贸n de Empresas de la Tecnolog铆a del Suelo y Subsuelo (AETESS) (link) y de un v铆deo descriptivo de la ejecuci贸n de micropiloles (www.aetess.com). Espero que ambos documentos os sean de utilidad.

Referencias:

YEPES, V. (2016). Procedimientos de construcci贸n de cimentaciones y estructuras de contenci贸n. Colecci贸n Manual de Referencia. Editorial Universitat Polit猫cnica de Val猫ncia, 202聽pp. ISBN: 978-84-9048-457-9.

11 julio, 2017
 
|   Etiquetas: ,  ,  ,  |  

Publicada By  V铆ctor Yepes Piqueras - EQUIPOS DE SONDEO Y PROCEDIMIENTOS DE MEJORA DE TERRENOS, M茅todos y equipos para la mejora del terreno    

http://www.model-co.com/es/aplicaciones/aplicaciones-lechadas/wet_soil_mixing.asp

http://www.model-co.com/es/aplicaciones/aplicaciones-lechadas/wet_soil_mixing.asp

Esta t茅cnica de mejora y refuerzo de suelos blandos o flojos consiste en el mezclado mec谩nico y profundo de los materiales disgregados del terreno con un aglomerante, l铆quido o s贸lido, generando un nuevo material tipo suelo-cemento. El aglomerante suele ser cemento, cal y bentonita.聽El terreno as铆 estabilizado es m谩s resistente, menos permeable y de menor compresibilidad que el terreno original.

La incorporaci贸n de los aglomerantes al terreno puede llevarse a cabo en forma de lechada (M茅todo h煤medo)聽o mediante aire comprimido (M茅todo seco).聽Para聽 cada caso es necesaria la utilizaci贸n de una herramienta especial que permita la ejecuci贸n de la mezcla en profundidad.

La mezcla profunda de suelos se puede clasificar en dos grupos: mezclado vertical, generando columnas o en masa horizontal, produciendo fajas o extensiones importantes en plantas.

En el caso de mezclado vertical, el di谩metro de la columna es constante en profundidad y depende de la capacidad de la herramienta y el m茅todo que se utilice (h煤medo o seco). Se ejecuta con una mezcladora giratoria que perfora el terreno hasta la profundidad requerida. En ese momento empieza la inyecci贸n del aglomerante mientras se extrae el varillaje.

http://jafecusa.com/?page_id=2796

http://jafecusa.com/?page_id=2796

La t茅cnica de mezclado en masa consiste en una retroexcavadora en la que el brazo de la pala sustituye por un brazo excavador con un cabezal rotatorio que posee un inyector por el que se impulsa la mezcla aglomerante. Este m茅todo utiliza equipos no complejos: una retroexcavadora y una bomba de inyecci贸n. Es r谩pido en la ejecuci贸n, pero su uso se limita a la longitud del brazo, que no suele ser superior a 5 m.

A continuaci贸n os dejo varios v铆deos y animaciones al respecto.

Referencias:

MART脥, J.V.; GONZ脕LEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcci贸n. Mejora de terrenos. Editorial de la Universidad Polit茅cnica de Valencia. Ref. 2004.844.

7 julio, 2017
 

Publicada By  V铆ctor Yepes Piqueras - EQUIPOS DE SONDEO Y PROCEDIMIENTOS DE MEJORA DE TERRENOS, Maquinaria para sondeos y perforaciones    

www.flowtex.com.ar

www.flowtex.com.ar

El desarrollo de la tecnolog铆a PHD se ha basado fundamentalmente en las innovaciones realizadas en los sistemas de navegaci贸n y seguimiento de la perforaci贸n. La navegaci贸n permite conocer con precisi贸n la localizaci贸n de la punta de perforaci贸n. Para controlar la direcci贸n y profundidad de la cabeza, se le coloca en su interior o junto a ella una sonda que emite se帽ales que se recogen en superficie. Este sistema v铆a radio se denomina 鈥Walk-over鈥, que incluso es capaz de capturar las se帽ales sin acceso directo sobre el transmisor; es un sistema muy utilizado en la PHD, sobre todo en trabajos peque帽os y medianos.

Sin embargo, a veces resulta complicado seguir en superficie al transmisor, como por ejemplo en un r铆o; en estos casos se puede utilizar un cable conectado a la cabeza para el guiado, ser铆a el sistema de cable 鈥Wire-line鈥, utilizado tambi茅n cuando se requiere una mayor precisi贸n. Existe asimismo la posibilidad de anular el efecto de campos magn茅ticos y el茅ctricos cuando se atraviesan elementos que interfieren las se帽ales. Otros sistemas, denominados 鈥Gyro compass鈥, utilizan la magnetometr铆a para la localizaci贸n; estos giroscopios trabajan independientemente del campo magn茅tico terrestre y por tanto determinan de forma precisa la direcci贸n del eje de perforaci贸n. Li (2013) explica la monitorizaci贸n de una tuber铆a de gas durante su ejecuci贸n.

Todos estos sistemas de navegaci贸n se encuentran asistidos por ordenador para el correcto control de la direcci贸n. La tabla resume los diferentes procedimientos de navegaci贸n con detalles de los campos de utilizaci贸n (IbSTT, 2013).

Tabla. Diferentes procedimientos de navegaci贸n de PHD (IbSTT, 2013).

Tabla. Diferentes procedimientos de navegaci贸n de PHD (IbSTT, 2013).

Os dejo un v铆deo explicativo que espero os sea de inter茅s.

Referencias:

  • IbSTT Asociaci贸n Ib茅rica de Tecnolog铆a SIN Zanja (2013). Manual de Tecnolog铆as Sin Zanja.
  • Li, S. (2013). Construction monitoring of a municipal gas pipeline during horizontal directional drilling. Journal of Pipeline Systems Engineering and Practice, Volume 4, No. 4, 04013005.
  • Yepes, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Polit猫cnica de Val猫ncia, Ref. 209. Valencia, 89 pp.
  • Yepes, V. (2015). Aspectos generales de la perforaci贸n horizontal dirigida. Curso de Postgrado Especialista en Tecnolog铆as Sin Zanja, Ref. M7-2, 10 pp.

 

Publicada By  V铆ctor Yepes Piqueras - EQUIPOS DE SONDEO Y PROCEDIMIENTOS DE MEJORA DE TERRENOS, M茅todos y equipos para la mejora del terreno    

http://www.malcolmdrilling.com/cutter_soil_mixing/

Hidrofresa. http://www.malcolmdrilling.com/cutter_soil_mixing/

Esta t茅cnica de mejora de suelos se emplea para generar pantallas impermeabilizantes verticales mediante el uso de hidrofresas. Consiste en excavar el terreno en paneles verticales mediante una cabeza cortadora (hidrofresa) suspendida de un brazo gr煤a articulado. Esta cabeza presenta dos elementos cortantes giratorios provistos de dientes de corte que giran en direcciones opuestas para expulsar el material excavado.

La cabeza tambi茅n posee un inyector, en la parte central de las dos ruedas cortantes, por el cual se inyecta una mezcla de bentonita-cemento. Esta mezcla, gracias al movimiento giratorio de los dientes y de unas paletas giratorias, se amalgama con los detritos formando un nuevo material. Tras el fraguado del cemento se obtiene una pantalla impermeable.聽La ventaja del m茅todo es que se usa el propio material del terreno, no generando apenas residuos.

http://www.apgeotecnia.pt/en/papers/13cngmontaigne.html

http://www.apgeotecnia.pt/en/papers/13cngmontaigne.html

En pantallas poco profundas, de menos de 20 m, se ejecuta en una fase, que consiste en inyectar la bentonita-cemento seg煤n se tritura el terreno. Se usa con tiempos cortos de perforaci贸n para que no frag眉e el cemento. En mayores profundidades se usan dos fases; en la primera se excava hasta la cota deseada y luego durante el ascenso se inyecta la mezcla.

Para ejecutar muros continuos, se divide la construcci贸n en paneles primarios y secundarios, que se solapan con los anteriores con juntas frescas si los paneles primarios no han fraguado, o bien con solapes duros si ya han endurecido.

Os dejo algunos v铆deos y animaciones al respecto.

Referencias:

MART脥, J.V.; GONZ脕LEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcci贸n. Mejora de terrenos. Editorial de la Universidad Polit茅cnica de Valencia. Ref. 2004.844.

 

8 febrero, 2017
 

Publicada By  V铆ctor Yepes Piqueras - EQUIPOS DE SONDEO Y PROCEDIMIENTOS DE MEJORA DE TERRENOS, Maquinaria para sondeos y perforaciones    

Figura 1. Perforaci贸n Horizontal Dirigida. http://www.construtec.es/

Figura 1. Perforaci贸n Horizontal Dirigida. http://www.construtec.es/

Actualmente existe una gran variedad de m谩quinas empleadas en la PHD. En la Tabla 1 se recoge una clasificaci贸n en funci贸n de la fuerza m谩xima de tiro, el par m谩ximo y el peso (IbSTT, 2013). M谩s del 90% de las m谩quinas se pueden clasificar como peque帽as o medianas, con una fuerza m谩xima de tiro de 250 kN. Con estas caracter铆sticas, se pueden colocar di谩metros que oscilan entre los 50 mm y los 2200 mm, e incluso llegar a 3 km de conducci贸n si se dan las circunstancias favorables. Aunque las m谩quinas est谩ndar y m谩s vers谩tiles del mercado suelen tener 500 kN de tracci贸n, las mayores tiran unos 2000 kN. Resulta interesante en este sentido el trabajo de Gierczak (2014) donde se realiza una valoraci贸n cualitativa de los riesgos inherentes a los proyectos PHD. Adem谩s, estas m谩quinas presentan una gran variedad de sistemas de guiado, cabezas de perforaci贸n, de ensanchamiento y otros accesorios (Figura聽2).

Tabla 1. Clasificaci贸n de m谩quinas para la perforaci贸n horizontal dirigida (IbSTT, 2013)

Tabla 1. Clasificaci贸n de m谩quinas para la perforaci贸n horizontal dirigida (IbSTT, 2013)

Figura 7. Mandriles de cabeza de tiro. Imagen de Terra Trenchless Technologies

Figura 2. Mandriles de cabeza de tiro. Imagen de Terra Trenchless Technologies

Las peque帽as acometidas utilizan sistemas Mini-PHD (Figura 3) en las que la direcci贸n de la cabeza de perforaci贸n se logra gracias al corte en bisel que presenta la propia broca. En los sistemas Maxi-PHD se utiliza una camisa doblada para desviar el eje del cabezal de corte, adem谩s de un tubo de lavado (鈥washover鈥) o una camisa con un gran di谩metro interno, dentro de la que se desliza la sarta de perforaci贸n. A pesar de la gran variedad de m谩quinas y fabricantes, los equipos est谩n montados sobre tr谩iler, sobre orugas o por m贸dulos. El sistema modular suele ser la mejor opci贸n para los equipos de mayor potencia, por su facilidad y rapidez de acoplamiento. Para obras de f谩cil acceso y para facilitar el transporte, lo mejor ser铆a montar el equipo sobre un tr谩iler, pero si tenemos problemas de movilidad, mejor ser铆a montarlo sobre orugas.

Figura 8. Mini-PHD para acometidas modelo GRUNDOPIT. Im谩genes de Sistemas de Perforaci贸n S.L.U.

Figura 3. Mini-PHD para acometidas modelo GRUNDOPIT. Im谩genes de Sistemas de Perforaci贸n S.L.U.

Los rendimientos de las m谩quinas PHD dependen del tipo de terreno (ver Tabla 2), pero tambi茅n de aspectos gerenciales, medioambientales o de las condiciones de la tuber铆a. Zayed y Mahmoud (2013) analizan todos los factores que influyen en la productividad. Predecir la producci贸n y los costes que va a tener un equipo de estas caracter铆sticas puede ser complejo (Yepes, 2015); en este sentido Zayed y Mahmoud (2014) proponen t茅cnicas basadas en la l贸gica difusa para su predicci贸n.

Tabla 2. Valoraci贸n de la aplicabilidad de la t茅cnica PHD en funci贸n del material (Hair, 1994).

Tabla 2. Valoraci贸n de la aplicabilidad de la t茅cnica PHD en funci贸n del material (Hair, 1994).

As铆, lo m谩s favorable son arcillas homog茅neas, mientras que los materiales granulares presentan problemas de estabilidad, sobre todo bajo nivel fre谩tico. Adem谩s, las gravas pueden acelerar el desgaste de la cabeza de perforaci贸n. Wang y Sterling (2007) han estudiado el comportamiento de la PHD en arenas flojas o mezclas de arenas y gravas, que son los terrenos m谩s problem谩ticos. En el caso de roca, las m谩quinas deben contar con motores de lodos que accionen las cabezas cortadoras. Existen incluso m谩quinas con doble varilla en el que el tubo interior hacer rotar la cabeza cortadora de roca y el exterior proporciona la direcci贸n de perforaci贸n; sin embargo, estas m谩quinas son de peque帽o di谩metro y longitud de perforaci贸n. Otra opci贸n es combinar la percusi贸n con el empuje y la rotaci贸n.

En cuanto al emplazamiento de las m谩quinas, 茅stas se instalan en superficie, aunque en ocasiones se implantan en un foso. Las de superficie se desplazan mediante orugas, aunque si son muy grandes a veces se requieren medios de transporte. Con todo, son necesarios peque帽as excavaciones para conectar los extremos de los tramos de tuber铆a. Las m谩quinas emplazadas en fosos se usan normalmente para tramos cortos y rectos, con ligeras desviaciones. Esta circunstancia tambi茅n restringe la longitud de la sarta de perforaci贸n.

Las m谩quinas PHD presentan dos caracter铆sticas comunes, un soporte que empuja la sarta de perforaci贸n para la perforaci贸n piloto y luego tira de ella y del tubo durante el ensanchamiento (Figura 4), y un motor que hace girar la sarta de perforaci贸n, junto con la cabeza de perforaci贸n o de ensanche. El empuje suele ser hidr谩ulico, y la inclinaci贸n del soporte est谩 inclinada entre 10潞 y 20潞 respecto a la horizontal. Si la m谩quina se emplaza en un foso, la reacci贸n necesaria la proporcionan las caras de la excavaci贸n. Las m谩quinas de superficie se anclan al suelo para su estabilizaci贸n.

Figura 9. Conexi贸n del escariador a la tuber铆a. Imagen de Apollo Trenchless, Inc.

Figura 4. Conexi贸n del escariador a la tuber铆a. Imagen de Apollo Trenchless, Inc.

La sarta de perforaci贸n est谩 formada por tubos que est谩n sometidos a grandes esfuerzos, tanto de tracci贸n como de compresi贸n por el empuje y tiro de la m谩quina, as铆 como de torsi贸n por el par de rotaci贸n. Adem谩s deben ser flexibles para adaptarse a los cambios de direcci贸n de la perforaci贸n y ligeros para facilitar su transporte. Y por supuesto, resistentes a la abrasi贸n y al desgaste. Cheng y Polak (2007) presentan un modelo te贸rico para el dimensionamiento de las tuber铆as y Yang et al. (2014) proporcionan un modelo din谩mico determinar los esfuerzos de tiro. Las m谩quinas emplazadas en superficie usan tubos de entre 3 y 9,6 m de longitud, mientras que las situadas en un foso requieren tramos m谩s cortos, entre 0,3 y 1, 5 m. Estos tramos suelen roscarse entre s铆, aunque tambi茅n hay conexiones tipo bayoneta. La tuber铆a se incorpora a la perforaci贸n por tramos carg谩ndose por un sistema autom谩tico de la m谩quina (Figura 5). Los tramos se pueden roscar o desenroscar de forma autom谩tica para acelerar la producci贸n y seguridad de las operaciones.

Figura 10. Sistema de carga de tramos de tuber铆a. Imagen de Zemin Arastrima Merkezi, Corp.

Figura 5. Sistema de carga de tramos de tuber铆a. Imagen de Zemin Arastrima Merkezi, Corp.

A continuaci贸n os dejo un v铆deo explicativo que espero sea de vuestro inter茅s.

Referencias:

  • Cheng, E., and Polak, M. A. (2007). Theoretical model for calculating pulling loads for pipes in horizontal directional drilling. Tunnelling and Underground Space Technology, Volume 22, No. 5-6, pp. 633-643.
  • Gierczak, M. (2014). The qualitative risk assessment of mini, midi and maxi horizontal directional drilling projects. Tunnelling and Underground Space Technology, Volume 44, pp. 148-156.
  • IbSTT Asociaci贸n Ib茅rica de Tecnolog铆a SIN Zanja (2013). Manual de Tecnolog铆as Sin Zanja.
  • Wang, X., and Sterling, R. L. (2007). Stability analysis of a borehole wall during horizontal directional drilling. Tunnelling and Underground Space Technology, Volume 22, No. 5-6, pp. 620-632.
  • Yang, C. J., Zhu, W. D., Zhang, W. H., Zhu, X. H., and Ren, G. X. (2014). Determination of pipe pullback loads in horizontal directional drilling using an advanced computational dynamic model. Journal of engineering mechanics, Volume 140, No. 8, 04014060.
  • Yepes, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Polit猫cnica de Val猫ncia, Ref. 209. Valencia, 89 pp.
  • Yepes, V. (2015). Coste, producci贸n y mantenimiento de maquinaria para construcci贸n. Editorial Universitat Polit猫cnica de Val猫ncia, 155 pp.
  • Yepes, V. (2015). Aspectos generales de la perforaci贸n horizontal dirigida. Curso de Postgrado Especialista en Tecnolog铆as Sin Zanja, Ref. M7-2, 10 pp.
  • Zayed, T., and Mahmoud, M. (2013). Data acquisition and factors impacting productivity of horizontal directional drilling (HDD). Tunnelling and Underground Space Technology, Volume 33, pp. 63-72.
  • Zayed, T., and Mahmoud, M. (2014). Neurofuzzy-based productivity prediction model for horizontal directional drilling. Journal of Pipeline Systems Engineering and Practice, Volume 5, No. 3, 04014004.
20 septiembre, 2016
 

Publicada By  V铆ctor Yepes Piqueras - EQUIPOS DE SONDEO Y PROCEDIMIENTOS DE MEJORA DE TERRENOS, Maquinaria para sondeos y perforaciones    

Figura. Fases en la ejecuci贸n de una PHD. Fuente: http://tracksonhorizontaldrilling.com.au/directional-drilling-presents-top-solution/

Figura. Fases en la ejecuci贸n de una PHD. Fuente: http://tracksonhorizontaldrilling.com.au/directional-drilling-presents-top-solution/

La instalaci贸n propiamente dicha de las tuber铆as o los conductos se realiza en varias fases. Primero se perfora un taladro piloto; a continuaci贸n se ensancha dicha perforaci贸n de forma conc茅ntrica en sentido contrario al de la perforaci贸n piloto. En ese momento la m谩quina tira y la tuber铆a se engancha al escariador para alojarla en su posici贸n definitiva.

La perforaci贸n piloto constituye la siguiente fase del proceso tras los estudios previos y el emplazamiento de la maquinaria. Se trata de perforar con un cabezal direccionable con un varillaje especial que admite cambios de orientaci贸n. Su di谩metro depender谩 de la maquinaria utilizada y est谩 relacionada con el tama帽o de las barras de perforaci贸n y de las brocas de perforaci贸n. Los aspectos m谩s relevantes a considerar son las posibles obstrucciones y los radios de curvaturas. Un sistema de navegaci贸n gu铆a la cabeza de perforaci贸n. Lo habitual es que el varillaje permita la entrada de lodos, que pueden inyectarse a presi贸n para mejorar la perforaci贸n. Los lodos arrastran el detritus hacia el exterior. En el caso de terrenos duros se puede utilizar un motor de lodos (mud-motor) que acciona el cabezal de perforaci贸n.

Tras la perforaci贸n piloto se realiza la operaci贸n de ensanche, normalmente en sentido inverso, tirando de un escariador. El agrandamiento puede hacerse de una vez o en fases sucesivas hasta alcanzar el di谩metro necesario. Es habitual que el di谩metro final sea el doble del de la tuber铆a a instalar. Un aspecto clave es el terreno y su estabilidad, pues va a condicionar el uso del ensanchador. As铆, en terrenos blandos se emplean ensanchadores tipo flycutter o barriles, mientras que en terrenos duros o roca se necesitan ensanchadores especiales con protecciones de carburo de tunsgteno. Existen escariadores cortadores, que corta trozos peque帽os de material que se mezclan con el fluido de perforaci贸n; el escariador compactador, donde los recortes se compactan; y los mixtos, donde los recortes se compactan y se mueven.

Figura. Cabeza de perforaci贸n. Im谩gen de Catalana de Perforacions

Figura. Cabeza de perforaci贸n. Im谩gen de Catalana de Perforacions

Figura. Escariador. Im谩gen de Catalana de Perforacions

Figura. Escariador. Im谩gen de Catalana de Perforacions

Por 煤ltimo, la tuber铆a se alinea y se fija justo detr谩s del ensanchador y se introduce, de una sola vez, en el interior de la perforaci贸n tirando de ella. Para facilitar la operaci贸n los lodos lubrican las paredes de la perforaci贸n para reducir el rozamiento. Cuando se recoge el varillaje, la instalaci贸n ya est谩 terminada.

Las recomendaciones generales para la ejecuci贸n de PHD pasar铆an por normalizar los m茅todos de trabajos para aumentar rendimientos y reducir costes, establecer sistemas de control que garanticen la seguridad y la calidad de los trabajos y establecer un sistema capaz de rechazar, corregir o aceptar las desviaciones que se puedan dar.

A continuaci贸n os dejo un v铆deo explicativo al respecto del procedimiento constructivo del PHD.

 

Referencias:

  • IbSTT Asociaci贸n Ib茅rica de Tecnolog铆a SIN Zanja (2013). Manual de Tecnolog铆as Sin Zanja.
  • Yepes, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Polit猫cnica de Val猫ncia, Ref. 209. Valencia, 89 pp.
  • Yepes, V. (2015). Aspectos generales de la perforaci贸n horizontal dirigida. Curso de Postgrado Especialista en Tecnolog铆as Sin Zanja, Ref. M7-2, 10 pp.
25 julio, 2016
 

Publicada By  V铆ctor Yepes Piqueras - EQUIPOS DE SONDEO Y PROCEDIMIENTOS DE MEJORA DE TERRENOS, Maquinaria para sondeos y perforaciones    

http://www.treltec.com/

http://www.treltec.com/

Al igual que ocurre con cualquier procedimiento constructivo, la PHD tiene sus etapas de planificaci贸n, ejecuci贸n y control (Pellicer et al., 2014). El proceso de instalaci贸n de una tuber铆a o canalizaci贸n mediante PHD comienza con un estudio previo con el objeto de elegir la mejor m谩quina y 煤tiles para un caso concreto. Se incluye la topograf铆a de la zona y un estudio geot茅cnico que determine el tipo de terreno. No menos importante es detectar con precisi贸n los servicios existentes en el subsuelo mediante un georadar e incluso analizar rutas alternativas. A continuaci贸n se debe adecuar la zona de trabajo para el emplazamiento de los equipos, tanto en el inicio de la perforaci贸n como en la salida. No se debe subestimar la planificaci贸n. Por cada d铆a de trabajo de campo deber铆a dedicarse un m铆nimo de dos d铆as de planificaci贸n.

La etapa de estudios previos deber铆a centrarse en dos aspectos que se consideran fundamentales:

1. La naturaleza intr铆nseca del proceso de construcci贸n que implica:

  • El corte de las formaciones del suelo y su incorporaci贸n a los fluidos de perforaci贸n
  • El mantenimiento continuo y estable de las paredes de la perforaci贸n
  • El transporte del detritus suspendido en la mezcla para permitir la instalaci贸n de la tuber铆a

 

2. El trazado de la perforaci贸n, que deber谩 centrarse en el obst谩culo a cruzar, considerando especialmente las condiciones geot茅cnicas e hidrol贸gicas (ver Figura), as铆 como identificar el radio de curvatura de las barras de perforaci贸n y los esfuerzos m谩ximos admisibles.

Esquema

Figura. Esquema de perforaci贸n PHD. Fuente: Gu铆a T茅cnica Colombiana GTC 231

Os dejo a continuaci贸n un v铆deo explicativo que espero sea de vuestro inter茅s.

Referencias:

  • IbSTT Asociaci贸n Ib茅rica de Tecnolog铆a SIN Zanja (2013). Manual de Tecnolog铆as Sin Zanja.
  • Pellicer, E., Yepes, V., Teixeira, J.C., Moura, H.P., and Catal谩, J. (2014). Construction Management. Wiley Blackwell, 316 pp.
  • Yepes, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Polit猫cnica de Val猫ncia, Ref. 209. Valencia, 89 pp.
  • Yepes, V. (2015). Aspectos generales de la perforaci贸n horizontal dirigida. Curso de Postgrado Especialista en Tecnolog铆as Sin Zanja, Ref. M7-2, 10 pp.
22 julio, 2016
 

Publicada By  V铆ctor Yepes Piqueras - EQUIPOS DE SONDEO Y PROCEDIMIENTOS DE MEJORA DE TERRENOS, Maquinaria para sondeos y perforaciones    

Esquema de Perforaci贸n Horizontal Dirigida

Esquema de Perforaci贸n Horizontal Dirigida

La Perforaci贸n Horizontal Dirigida PHD (HDD, de su acr贸nimo en ingl茅s Horizontal Directional Drilling) para colocar nuevas tuber铆as sin zanja surgi贸 de la fusi贸n de las tecnolog铆as empleadas en la captaci贸n de agua y del petr贸leo. Resulta sorprendente descubrir que Leonardo da Vinci invent贸, en el siglo XV, la primera m谩quina de perforaci贸n horizontal que serv铆a para introducir tuber铆as de madera. La primera instalaci贸n con PHD se realiz贸 en 1971 con una tuber铆a de acero de 180 mm para cruzar el r铆o P谩jaro cerca de Watsonville, California. Hoy es una t茅cnica que se ha generalizado para franquear obst谩culos como r铆os, carreteras y zonas complicadas de atravesar mediante una excavaci贸n convencional. Tambi茅n se utiliza en las obras municipales para las conducciones de agua potable, gas natural, fibra 贸ptica, cableados el茅ctricos, alcantarillado y similares cuando hay que cruzar edificios o calles.

Figura. M谩quina de perforaci贸n horizontal ideada por Leonardo da Vinci, antes de 1495. Fuente: http://trenchless-australasia.com/

Figura. M谩quina de perforaci贸n horizontal ideada por Leonardo da Vinci, antes de 1495. Fuente: http://trenchless-australasia.com/

Lubrecht (2012) analiza las ventajas medioambientales de las t茅cnicas PHD usadas en la descontaminaci贸n de suelos. Sin embargo, Ariaratnam y Proszek (2006) recuerdan los desorbitantes costes legales por da帽os a terceros en los que est谩n incurriendo contratistas negligentes, tanto de PHD como de excavaci贸n tradicional. Ello obliga a sistemas muy precisos para detectar obst谩culos y otras conducciones para evitar accidentes y explosiones (Jaganathan et al., 2011).

El movimiento de perforaci贸n habitualmente se realiza en un plano horizontal que contiene longitudinalmente a la l铆nea de perforaci贸n, formada por la cabeza y la sarta de perforaci贸n. Al principio, con la t茅cnica PHD en desarrollo, s贸lo se instalaban tuber铆as a presi贸n y conductos de cables, sin que la inclinaci贸n fuera un par谩metro cr铆tico. Hoy las perforadoras cuentan con sistemas de guiado de alta precisi贸n que permiten colocar tuber铆as de gravedad.

Se podr铆a decir que la PHD es una t茅cnica a medio camino entre la perforaci贸n de topo de percusi贸n (impact moling) y el microtunelado. PHD proporciona un creciente n煤mero de opciones de instalaci贸n, pues la trayectoria de la perforaci贸n se puede cambiar en cualquier momento para sortear obst谩culos superficiales o subterr谩neos. Las instalaciones habituales utilizan di谩metros de 50 a 1200 mm y longitudes de hasta 2000 m. Si bien Allouche et al. (2000) indican que el 72% de las tuber铆as instaladas con PHD son de di谩metros menores o iguales a 100 mm. Los materiales de las tuber铆as suelen ser de polietileno de alta densidad (PEAD), cloruro de polivinilo (PVC), acero y hierro d煤ctil. La fuerza de tiro se emplea para clasificar los sistemas PHD, pues est谩 relacionado con el tama帽o de m谩quina necesario, el di谩metro del conducto a instalar y la longitud de perforaci贸n. Ariaratnam y Allouche (2000) proporcionan un buen compendio de recomendaciones y buenas pr谩cticas relacionadas con esta t茅cnica.

Os dejo a continuaci贸n un v铆deo explicativo que introduce la t茅cnica de la Perforaci贸n Horizontal Dirigida.

Referencias:

  • Allouche, E., Ariaratnam, S., and Lueke, J. (2000). Horizontal Directional Drilling: Profile of an Emerging Industry. Journal of Construction Engineering and Management, Volume 126, No. 1, pp. 68鈥76.
  • Ariaratnam, S. T., and Allouche, E. N. (2000). Suggested practices for installations using horizontal directional drilling. Practice Periodical on Structural Design and Construction, Volume 5, No. 4, pp. 142-149.
  • Ariaratnam, S. T., and Proszek, J. (2006). Legal consequences of damages to underground facilities by horizontal directional drilling. Journal of Professional Issues in Engineering Education and Practice, Volume 132, No. 4, pp. 342-354.
  • IbSTT Asociaci贸n Ib茅rica de Tecnolog铆a SIN Zanja (2013). Manual de Tecnolog铆as Sin Zanja.
  • Jaganathan, A. P., Shah, J. N., Allouche, E. N., Kieba, M., and Ziolkowski, C. J. (2011). Modeling of an obstacle detection sensor for horizontal directional drilling (HDD) operations. Automation in Construction, Volume 20, No. 8, pp. 1079-1086.
  • Lubrecht, M. D. (2012). Horizontal directional drilling: A green and sustainable technology for site remediation. Environmental Science & Technology, Volume 46, No. 5, pp. 2484-2489.
  • Yepes, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Polit猫cnica de Val猫ncia, Ref. 209. Valencia, 89 pp.
  • Yepes, V. (2015). Aspectos generales de la perforaci贸n horizontal dirigida. Curso de Postgrado Especialista en Tecnolog铆as Sin Zanja, Ref. M7-2, 10 pp.
18 julio, 2016
 

Publicada By  V铆ctor Yepes Piqueras - EQUIPOS DE SONDEO Y PROCEDIMIENTOS DE MEJORA DE TERRENOS, Excavaciones en zanja y en medio urbano. Hincas de tuber铆a, microt煤neles, EXCAVACIONES Y VOLADURAS, Maquinaria para sondeos y perforaciones    

El “pipe ramming” es una t茅cnica de instalaci贸n de tuber铆as sin zanja (trenchless) utilizada para hincar horizontalmente tuber铆as de acero de diferentes di谩metros. Es un m茅todo muy 煤til en instalaciones bajo estructuras como vias, cuerpos de agua, edificaciones, etc.

El empuje se realiza mediante un martillo neum谩tico o hidr谩ulico, que golpea el tubo de acero, el cual penetra el suelo sin causar alteraci贸n del mismo. Una vez instalado el tubo se remueve el material de su interior.

Posteriormente se desaloja el material que permanece al interior del tubo met谩lico utilizando para ello aire comprimido o agua a presi贸n, quedando el interior disponible para acondicionar la tuber铆a聽 met谩lica al servicio o utilizarla como protecci贸n o pase y colocar una nueva tuber铆a en su interior.

El m茅todo constructivo es el mismo utilizado para la hinca de pilotes con tubos de acero lo que facilita su manejo para quienes ya tienen experiencia en pilotaje. Es importante destacar que se utilizan tubos de acero, ya que por las caracter铆sticas de resistencia y ductilidad del acero estos resisten y distribuyen mejor las cargas transmitidas por el martillo sin que se da帽e la estructura de la tuber铆a.

(m谩s…)

14 julio, 2016
 

P谩gina siguiente »

Universidad Politécnica de Valencia