Curso gratuito MOOC: Encofrados y las cimbras en obra civil y edificación

Cimbra tubular en paso superior. Imagen: V. Yepes (1992)

Acerca de este curso MOOC de la UPV

Este es un curso básico de construcción de obras civiles y de edificación con encofrados y cimbras organizado y avalado por la Universitat Politècnica de València. Es un curso que no requiere conocimientos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado de modo que el estudiante puede profundizar en aquellos aspectos que más les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.

En este curso aprenderás las distintas tipologías y aplicabilidad de los encofrados y las cimbras utilizados en obras de ingeniería civil, de edificación y en la industria del prefabricado. Se índice especialmente en la comprensión del empuje del hormigón fresco sobre los encofrados, en los aspectos relacionados con la seguridad en los trabajos de cimbrado, descimbrado, encofrado y desencofrado. Se estudia con detalle el cimbrado y descimbrado de plantas sucesivas en edificación y se abordan los encofrados y cimbras empleados en puentes, túneles, estructuras en altura, edificios, entre otros: encofrados telescópicos, trepantes, deslizantes, encofrados túnel, cimbras autolanzables, cimbras autoportantes, etc.

El contenido del curso está organizado en 4 módulos, cada uno con 4 secuencias de aprendizaje que permiten, con una dedicación menor a una hora diaria, aprender los aspectos básicos de los encofrados y las cimbras. Cada semana se trabaja un módulo, teniendo el curso una duración estimada de un mes.

El inicio del curso es el 12 de junio de 2018, y la finalización, el 9 de julio de 2018. La inscripción la puedes realizar en el siguiente enlace: https://www.upvx.es/courses/course-v1:IngenieriaDeLaConstruccion+encofrados+2018-01/about

Lo que aprenderás

Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:

  1. Comprender la utilidad y las limitaciones de las estructuras auxiliares (encofrados y cimbras) en la construcción de obras civiles y de edificación
  2. Evaluar y seleccionar el mejor tipo de encofrado y cimbra necesario para una construcción en unas condiciones determinadas, considerando la economía y la seguridad

 

By Sensenschmied – Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=18911631

Programa del curso

  1. ¿Qué hacer antes de empezar a construir una estructura de hormigón?
  2. Oficios perdidos en la historia actual de España: el encofrador
  3. ¿Qué son y para qué sirven los encofrados?
  4. Elementos auxiliares y funcionalidad de los encofrados
  5. Clasificación de los sistemas de encofrado
  6. Medidas de seguridad durante el desencofrado
  7. Empuje del hormigón fresco sobre un encofrado
  8. Métodos de cálculo del empuje del hormigón fresco
  9. Encofrado prefabricado para pilares
  10. Construcción de un forjado reticular
  11. Mesas encofrantes o sistemas pre-montados
  12. Construcción mediante encofrados túnel
  13. Moldes para hormigón prefabricado
  14. Mesas basculantes para la fabricación de paneles prefabricados
  15. Encofrados trepantes
  16. Encofrados deslizantes
  17. Carros de encofrado para túnel
  18. Carros de encofrado para construcción de puentes por avance sucesivo
  19. Clases de diseño de cimbras según la norma UNE-EN 12812
  20. Cimbrado, recimbrado, clareado y descimbrado de plantas consecutivas
  21. Precauciones específicas relativas al montaje y desmontaje de cimbras y encofrados
  22. Cimbras y encofrados hinchables
  23. Componentes de una cimbra montada con elementos prefabricados
  24. Precauciones para el montaje de la cimbra de un puente
  25. Cimentación de la cimbra de un puente losa
  26. Cimbras cuajadas en la construcción de puentes
  27. Cimbras porticadas en la construcción de puentes
  28. Definición de cimbra autolanzable
  29. Clasificación de las cimbras autolanzables
  30. Cimbra autolanzable frente a otros procedimientos constructivos
  31. Parámetros para seleccionar una cimbra autolanzable
  32. Elementos de una cimbra autolanzable
  33. Construcción de puentes mediante autocimbra bajo tablero
  34. Construcción de puentes mediante cimbra autolanzable sobre tablero
  35. Construcción de puentes mediante lanzador de vigas
  36. Construcción de puentes por dovelas mediante cimbras autoportantes
  37. Construcción de puentes arco con armaduras rígidas (autocimbras)

Conozca al profesor

Víctor Yepes Piqueras

Catedrático de Universidad. Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València

Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València. Su experiencia profesional se ha desarrollado fundamentalmente en Dragados y Construcciones S.A. (1989-1992) como jefe de obra y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado 69 artículos en revistas indexadas en el JCR. Autor de 8 libros, 22 apuntes docentes y más de 250 comunicaciones a congresos. Ha dirigido 11 tesis doctorales, con 4 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos.

Hormigonado con cubilote

cangilon-cubilote-para-descarga-de-hormigon-2538141n0Un cubilote es un equipo de trabajo consistente en un recipiente en forma de tronco de cono invertido de chapa de acero, que se llena generalmente de hormigón y que, guiado por una grúa, permite hormigonar zonas de difícil acceso o transportar a las mismas diferentes materiales.

Esta forma de colocar el hormigón requiere el uso de una grúa y/o un blondín. Se llena el recipiente a pie de camión u hormigonera y una vez transportado por la grúa, y suspendido de ella a poca distancia en vertical del sitio a hormigonar, se abre la compuerta inferior vertiéndose la masa fresca en su emplazamiento.

La capacidad de los cubilotes puede tener una gran variación entre 0,5 m3 a 4 m3, en función del tipo de aplicación. La consistencia seca del hormigón no se adapta bien a este sistema de puesta en obra.

Os dejo a continuación un par de vídeos para que veáis cómo se coloca el hormigón con este equipo. Espero que os gusten.

Referencia:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València. 189 pp.

Altura crítica de una excavación sin entibación

En numerosas ocasiones se plantea en obra la necesidad de entibar una excavación, especialmente cuando la profundidad sobrepasa 1,20 m. Para ello os dejo una formulación basada en la teoría de Rankine donde se calcula la altura crítica anulando el empuje activo del terreno. Como veréis, esta altura solo se puede conseguir con terrenos cohesivos donde no exista nivel freático. También os dejo un par de cuadros donde aparece la resistencia a compresión simple de terrenos cohesivos y una tabla con ángulos de inclinación y pendientes de taludes en función del terreno y de la presencia de agua. Debo advertir que cuando se hace uso de tablas, normalmente se trata de modelos simplificados que, en no pocas veces, sobredimensionan enormemente los fenómenos analizados. Por eso siempre aconsejo realizar un cálculo con datos fiables para contrastar.

Descargar (PDF, 77KB)

Tabla 1. Altura máxima admisible en metros de taludes libres de solicitaciones, en función del tipo de terreno, del ángulo de inclinación de talud no mayor de 60º y de la resistencia a compresión simple del terreno.

 

Tabla 2. Inclinaciones y pendientes de los taludes, dependiendo de la naturaleza y contenido en agua del terreno

 

Referencias:

http://www.osalan.euskadi.eus/contenidos/libro/seguridad_201210/es_doc/adjuntos/Seguridad%20en%20zanjas.pdf

http://www.insht.es/InshtWeb/Contenidos/Documentacion/FichasTecnicas/NTP/Ficheros/201a300/ntp_278.pdf

http://www.lineaprevencion.com/ProjectMiniSites/Video5/html/cap-2/db-prl-mt/seccion-2-desmonte-y-vaciado-a-cielo-abierto/seccion2desmonteyvaciadoacieloabierto.html

http://www.cepymearagon.es/WebCEPYME%5Cdatos.nsf/0/BB3A397513D24B57C1257DFE0031A982/$FILE/2014-DGA-02.pdf

 

Bomba de hormigón con sistema de válvulas de corredera plana

http://www.cnc-concretepump.com/Rock-Valve-Technology.php

Además de la bomba de hormigón de pistones de trompa, también es posible encontrar bombas con un sistema de corredera plana para impulsar el hormigón. En ambos casos, son sistemas de doble pistón, conectados por una válvula. Ambos pistones provocan un movimiento alternativo que genera una especie de lingote de hormigón en estado fresco que se impulsa a una presión casi constante.

Valvula 2

Continue reading “Bomba de hormigón con sistema de válvulas de corredera plana”

Precauciones para el montaje de la cimbra de un puente

Cimbra PERI UP Rosett
Cimbra PERI UP Rosett

La cimbra es una estructura provisional que requiere su propio proyecto y cálculo, con una especial atención a las hipótesis de carga y los detalles de diseño y montaje. No son extraños los accidentes, especialmente con las cimbras diáfanas, por no existir un proyecto adecuado. Dicho proyecto y las operaciones de montaje y desmontaje de estos elementos suele depender de una empresa especializada. Se debe exigir que la cimbra sea estable, especialmente a pandeo y que las deformaciones previstas se puedan compensar con las contraflechas necesarias.

Muchos problemas en las cimbras se encuentran en el punto de encuentro entre las torres y el encofrado, pues esta transición no está normalizada. El encuentro consta de varios niveles de perfiles o tablones apoyados sobre horquillas que, normalmente, no son solidarias con el husillo que las soporta, lo cual puede provocar inestabilidad si no se monta adecuadamente. Un ejemplo son las cargas excéntricas sobre los husillos provocada por la colocación inclinada de los perfiles originada por la pendiente del tablero, que muchas veces no se consideran en el cálculo. Otra circunstancia no contemplada en los cálculos puede ser el mal reparto de las cargas en las patas de las torres por una mala colocación de los perfiles o los tablones. Todo ello lleva a que se tengan que adoptar coeficientes de seguridad elevados, normalmente de 2 cuando las condiciones de montaje son muy estrictas, e incluso de 3, tal y como propugna la norma ACI.

Otros aspectos de gran importancia son el arriostramiento horizontal e inclinado de las torres para evitar el pandeo y para resistir las cargas horizontales. Además, una cimentación de las torres sobre tablones mal asentados o poco rígidos incrementa significativamente el asiento diferencial y el consiguiente incremento de carga no previsto en alguno de los apoyos.

Os dejo a continuación un vídeo de una cimbra cuajada T-60 y ENKOFORM HMK – ULMA. Espero que os guste la animación.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Moldes para hormigón prefabricado

Moldes para hormigón prefabricado. Cortesía: ANDECE
Moldes para hormigón prefabricado. Cortesía: ANDECE

El molde es el elemento que contiene al hormigón fresco, respondiendo su diseño a las exigencias de las piezas que se van a prefabricar. Se exige que los moldes presenten la máxima calidad posible para garantizar la precisión dimensional, la estabilidad, la versatilidad para adaptarse a otras formas, que sean fáciles de usar y durables. Por tanto, los moldes deben mantener su integridad durante el vertido del hormigón y en la aplicación del pretensado, si lo hubiese.

Los moldes deben reutilizarse el máximo número de veces posible, sin que ello suponga una merma en la calidad, por la repercusión económica que presenta en el producto final. La reutilización se puede realizar con piezas diferentes, aunque es deseable que se mantenga la tipología, cambiando en este caso sólo la longitud o la altura con pequeñas modificaciones. Suelen disponerse en horizontal y de forma continua, aunque también es posible disponerlos en algunos casos en vertical (en batería).

Los moldes suelen ser de acero, pues permite alargar el número de usos y adaptarse a la geometría necesaria. Estos moldes son fáciles de transportar y reubicar dentro de la planta. De hecho, los moldes suelen llenar las plantas de fabricación y a veces es un verdadero problema ubicarlos para facilitar las maniobras y el resto de actividades sin que molesten. El problema que pueden presentar es la corrosión del acero, que puede atenuarse con aditivos inhibidores de la corrosión y con un buen agente desencofrante.

Con todo, también existen moldes de otros materiales como el polietileno expandido, que son desechables. Este material es ligero, barato y permite ahorros de tiempo, aunque su uso está muy centrado en piezas ornamentales. También es cierto que este tipo de materiales, junto con otros como el poliéster o la fibra de vidrio, permite reducir la disipación del calor interno durante el fraguado, lo que permite acelerar el proceso de curado.

Por tanto, una forma de acelerar el curado es usar moldes de acero calefactados. En ellos se permite un aporte de energía que garantice una temperatura fija o una curva de temperatura de curado adecuada a la reacción química interna del hormigón. Los moldes de acero también pueden ser “autorresistentes” en el caso de piezas pretensadas, donde el propio molde puede contener los elementos de anclaje de las armaduras activas, sirviendo de bancada de pretensado.

También los moldes pueden disponer de un sistema de vibradores laterales o internos, de forma que se permita eliminar las burbujas de aire y mejorara la distribución de los áridos. Sin embargo, estos vibradores no se utilizan en el caso de emplear hormigón autocompactante. Además, como puede verse en la figura inferior, los moldes suelen presentar unas plataformas y accesos laterales para facilitar el acceso seguro de los operarios.

Molde prefabricado 2
Apertura de caras laterales antes de retirar la viga prefabricada. Escaleras de acceso a la plataforma lateral para el control del proceso. Cortesía: ANDECE.

Con el uso repetido de los moldes, éstos se deforman, pierden sección y cogen holguras en sus fijaciones. Todo ello perjudica la calidad de las piezas, por lo que resulta de gran importancia disponer de un buen plan de control y mantenimiento de estos moldes. De todas las operaciones, hay que cuidar la limpieza tras el uso. En el caso de elementos de gran longitud, hay que cuidar la alineación del conjunto del molde y su inmovilización para mantener la pieza dentro de las tolerancias exigidas.

En el siguiente vídeo, de Vifesa Fabricados Industriales, podemos ver moldes modulares para el prefabricado de marcos de hormigón de distintos tamaños.

Compactación del hormigón por centrifugación

1243210240158_hz_myalibaba_web12_9275El sistema de compactación por centrifugación se basa en el aprovechamiento de la fuerza centrífuga a la que son sometidos los propios componentes del hormigón, al aplicarles un movimiento de rotación. Por su fundamento físico el sistema de centrifugación resulta apropiado para fabricar piezas huecas de hormigón con forma cilíndrica (tubos, pilotes huecos, etc.).

Para ello se utilizan moldes giratorios completamente impermeables en cuyo interior es introducido el hormigón. Los moldes giran horizontalmente, bien solidariamente a un eje horizontal, o apoyados sobre un sistema de rodillos, con una velocidad proporcionada a la dimensión del tubo y progresivamente mayor a medida que avanza el proceso.

a) Masa de hormigón introducida en el cilindro, b) arrastre de la masa, c) la masa de hormigón queda adherida a la superficie interior del cilindro
a) Masa de hormigón introducida en el cilindro, b) arrastre de la masa, c) la masa de hormigón queda adherida a la superficie interior del cilindro

Durante el giro (ver figura) sobre cada punto actúan el peso del material P = mg y la fuerza centrífuga Fc = m rω2

En el caso en que  m rω2< mg en la posición M el propio peso del material lo hará caer hacia la parte inferior del molde de manera que sólo se producirá la compresión del hormigón, cuando:

 m rω2> m g

Se tiene así que el cuadrado de la velocidad de rotación debe ser inversamente proporcional al radio de la pieza y que además para que el proceso de compactación sea efectivo su valor ha de ser netamente mayor que el valor mínimo g/r.

Fuerzas que actúan sobre el hormigón
Fuerzas que actúan sobre el hormigón

Como se observa en la figura anterior, la resultante de las fuerzas que actúan sobre el material son variables en función de su posición: máxima en N y mínima en M. Pero en la práctica esto no afecta a la compactación, dada la velocidad de giro que desplaza al material durante el proceso de fabricación a una velocidad lineal de 10 a 25 m/s.

Durante todo el tiempo que gira la pieza, sobre todo en piezas de gran tamaño, la velocidad no se mantiene constante. Al principio mientras se carga el hormigón, la velocidad es reducida (≈ l/10 de Vmáx) y una vez se ha terminado la distribución del material se va acelerando poco a poco hasta llegar a la máxima velocidad. El tiempo que dura el giro de la pieza (entre dos y veinte minutos) debe ajustarse al espesor del tubo, sin exceso para evitar segregación en el hormigón. Con este fin, si los tubos son de gran espesor la compactación se suele hacer por capas sucesivas.

La impermeabilidad del molde debe ser la máxima posible para evitar la fuga del agua de amasado durante la centrifugación. Con la pérdida de agua se pierde también una parte de finos que puede afectar a la estanqueidad y al buen acabado superficial que es característico en las piezas compactadas por este sistema.

Distribución de los áridos por efecto de la fuerza centrífuga
Distribución de los áridos por efecto de la fuerza centrífuga

Los áridos deben ser de la misma composición y de tamaño inferior a 15 mm. La propia fuerza centrífuga al ser proporcional al peso de los áridos, da lugar a su clasificación por capas: los más gruesos son impulsados con más fuerza hacia el exterior y los más finos se sitúan en el interior. El efecto de este reparto es que en el exterior del tubo el hormigón adquiere una mayor resistencia, mientras en el interior la abundancia de finos proporciona una excelente impermeabilidad.

El hormigón debe verterse en el molde antes de que se inicie su fraguado con una consistencia plástica o blanda; no es conveniente que sea más fluido, ya que aparte de bajar la resistencia, la compresión del material durante la centrifugación es menor. Al final del proceso la consistencia es seca.

La impermeabilidad del molde debe ser la máxima posible para evitar la fuga del agua de amasado durante la centrifugación. Con la pérdida de agua se pierde también una parte de finos que puede afectar a la estanqueidad y al buen acabado superficial que es característico en las piezas compactadas por este sistema.

Os dejo algunos vídeos explicativos sobre el tema.

También os dejo un vídeo donde se explica la fabricación de pilotes de sección circular.

  

Referencia:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València. 189 pp.

 

Montaje de vigas artesa en pasos superiores

ala014Las vigas artesa prefabricadas constituyen elementos de sección en forma de U abierta con alas hacia el exterior de la viga. Este tipo de estructuras supuso un salto tecnológico en la prefabricación de los años 80 del siglo XX. Conforman una sección celular cerrada, situada entre la sección en cajón y la doble T. Se emplean para luces de pilas entre 25 y 45 m con vanos simplemente apoyados, llegando hasta los 60 m con vanos en cantilever. Lo habitual es disponer un par de piezas en sección transversal, con separaciones entre 5,5 y 6,5 m, con anchos de tablero entre 11,0 y 14,0 m. Son habituales los cantos de 1/20 de la luz, con cantos típicos entre 0,80 y 2,60 m. También es una sección muy adecuada para tableros de puentes de AVE, con un ancho de tablero de 14,0 m.

ala004

ala009

La maniobra de colocación de este tipo de vigas requiere grúas de gran capacidad de carga y una perfecta coordinación para su puesta en obra. En el vídeo que os presento se puede ver el izado e instalación de una viga artesa típica. Hay que tener en cuenta que los pesos de estas piezas pueden llegar a más de 2300 Kp/m, lo que supone izados del orden de 100 toneladas. En estos casos queda perfectamente justificada la optimización en coste y en peso de las piezas.

 

Referencias:

PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685. (link)

MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Engineering Structures, 48:342-352. DOI:10.1016/j.engstruct.2012.09.014. ISSN: 0141-0296.(link)

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; LUZ, A. (2014). Diseño automático de tableros óptimos de puentes de carretera de vigas artesa prefabricadas mediante algoritmos meméticos híbridos. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 30(3), 145-154. DOI: http://dx.doi.org/10.1016/j.rimni.2013.04.010. (link)

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2015). A memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement. Journal of Structural Engineering ASCE, 141(2): 04014114. DOI:10.1061/(ASCE)ST.1943-541X.0001058 

MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120:231-240. (link)

YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI: 10.1016/j.autcon.2014.10.013 (link)

YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4):738-749. (link)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Encofrados deslizantes

Slip_Form_System

Los encofrados deslizantes consisten en un molde de poca altura, capaz de configurar una sección de hormigón vertida en él de forma constante y a la misma velocidad que se eleva dicho molde. Los procesos de armado, encofrado, hormigonado y desencofrado son realizados de forma simultánea y continua. La forma de elevar el molde, que al principio fue manual, ahora se realiza de forma mecánica mediante sistemas hidráulicos, con un ascenso automático y a la velocidad deseada. Se pueden distinguir fundamentalmente dos tipos de encofrados deslizantes, los empleados para obras en vertical (silos, pozos, chimeneas, pilas, etc.) y los destinados a obras en horizontal (canales, etc.).

Este sistema se empezó a utilizar en Estados Unidos en 1903 y en 1924 en Europa, en la construcción de silos. Sin embargo, pronto se empezaron a construir otro tipo de obras como pilas de puente, depósitos elevados de agua o faros. En España las primeras realizaciones son de finales de los años cuarenta del siglo pasado, también en silos de grano.

Los encofrados deslizantes se utilizan preferentemente en obras de gran altura, sección constante o que varía ligeramente con la altura y espesores también ligeramente variables. Hoy día es posible realizar variaciones importantes en el espesor de la sección, aunque ello supone cierta dificultad añadida. En silos y estructuras que así lo permitan, se suele hormigonar con grúa torre. Su utilización se ha extendido hasta complicadas estructuras inclinadas y combinables con elementos prefabricados en estructuras compuestas.

En España destaca la realización con este método de la chimenea de la central térmica de Puentes de García Rodríguez (propiedad de ENDESA) que con una altura de de 356 m y un diámetro de 36 m en la base (espesor de 1,25 m) y de 18 m en coronación (espesor de 0,25 m). Esta chimenea (Endesa Termic), que comenzó a construirse en 1972 y cuyo funcionamiento empezó en 1976, fue realizada por Entrecanales y Tavora S.A., fue en su momento la más alta de Europa y la tercera del mundo (ver nota a pie de página).

Endesa Termic, chimenea de la central térmica de Puentes de García Rodríguez. Wikipedia

Ventajas del sistema:

a) Se realizan de forma simultánea varias operaciones, que en otros métodos deben hacerse de forma sucesiva, lo que supone una reducción del plazo de ejecución

b) Se suprimen tiempos muertos y cuellos de botella en las operaciones

c) Se consigue una gran velocidad de ejecución (hasta 6 m/día), con una muy buena calidad de obra

d) Se logra un gran número de reutilizaciones de los paneles

e) Es posible la construcción de obras de gran altura sin andamiajes, aplicando sistemas de elevación para personal y materiales

f) Economías significativas de mano de obra, al mecanizarse gran parte de las operaciones

g) Continuidad en la ejecución, incluso en tiempo frío, tomando las medidas que garanticen el endurecimiento del hormigón

h) Muy buen acabado de obra, debido al monolitismo, sin juntas frías,  y a la uniformidad

encofrados deslizantes esquema 2

Condiciones de aplicación:

En contrapartida a las ventajas anteriores, el sistema exige:

a) Estudio y redacción de todo un proyecto de encofrado mecanizado por técnicos competentes

b) Organización perfecta de la ejecución, con personal muy especializado, que asegure el trabajo las 24 horas

c) Fabricación y montaje de encofrados con gran exactitud, con tolerancias muy estrictas

encofrado deslizante esquema

El principio de funcionamiento:

La unidad fundamental del equipo son los gatos de trepa. Son huecos y a través de ellos pasa un tubo de acero que es la barra de trepa, que se apoya en la cimentación. El gato dispone de dos juegos de cuñas dentadas que se clavan en la barra alternativamente y hacen que el gato ascienda a lo largo de la misma. Del gato cuelgan dos vigas de acero por medio de una transversal que forman el normalmente denominado “yugo” o “caballete”. De los yugos se suspende el encofrado y el resto de estructuras, andamios y plataformas necesarias para las tareas de ferralla, hormigonado, etc. y los mecanismos de reducción de diámetro y espesor. Dependiendo del tipo de estructura que se trate, los procedimientos de hormigonado varían. Lo usual en estructuras muy altas como chimeneas, torres de TV, etc. es colocar un ascensor en el centro suspendido de unas estructuras radiales y guiado mediante unos cables tensados. En él sube una tolva de hormigón y , retirada esta, sirve también para el ascenso de ferralla y del personal. La vibración es normalmente con aguja.

 Elementos de un sistema de encofrado deslizante vertical:

a) Paneles: son los tableros del encofrado propiamente dicho

b) Caballetes: para arrastrar los paneles, a los que se anclan

c) Barras de apoyo: sobre las que se transmite el esfuerzo de elevación

d) Dispositivo de elevación: normalmente gatos o crics, actúan sobre los caballetes para elevar los paneles apoyándose en las barras

e) Plataformas de trabajo: de acceso a los diversos puntos de trabajo y control

f) Redes de las diferentes instalaciones: necesarias para el funcionamiento del encofrado

Encofrado deslizante

A continuación dejo algunos vídeos donde se puede comprobar el funcionamiento del sistema.

Un documental extenso sobre este sistema de enconfrados deslizantes lo podéis ver aquí.

Referencias:

DINESCU, T.; SANDUR, A.; RADULESCU, C. (1973). Los encofrados deslizantes. 1ª edición. Espasa-Calpe, S.A. Pozuelo de Alarcón, 496 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

RICOUARD, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.

 

_________________________________________________________________

Nota: Se utilizó en la construcción de la chimenea una torre colgada, de 120 t, de los gatos de trepa de 40 m de altura de la que se atirantaban los soportes. El problema fue desmontar esta torre al finalizar la operación. Para ello se utilizó, según me comenta Juan Manuel Lázaro (responsable del Departamento de Obras Singulares de Entrecanales y Tavora en aquel momento) un puente Bailey de 18 m colgado por medio de barras Dywidag de dos pórticos apoyados sobre el fuste de hormigón, sobre el cual se apoyó la torre. Esta maniobra fue idea de Javier Urquijo Grijalba.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Izado defectuoso de pasarela metálica

Las operaciones de izado de grandes cargas son, en ocasiones, los procedimientos más complicados en determinadas construcciones. En el vídeo que os paso a continuación podemos ver cómo una pasarela metálica de 40 toneladas, valorada en más de un millón de euros, se ha deformado por haber cambiado el sistema de izado previsto en proyecto. En efecto, la estructura se iba a levantar con una única grúa de 500 toneladas, pero en el último momento, se cambió el procedimiento de izado a dos grúas más pequeñas, una de 350 toneladas y otra telescópica. Lo que ocurrió es que la estructura levantada en tándem introdujo esfuerzos no previstos en el proyecto y provocó la deformación del puente. Por cierto, el vídeo se grabó el 21 de febrero de 2013 en Omagh, Irlanda del Norte. Espero que os guste. Agradezco a Enrique Montalar el enlace.