UPV



Procedimientos constructivos de cimentaciones, sistemas de retención de tierras y anclajes


Publicada By  Víctor Yepes Piqueras - EXCAVACIONES Y VOLADURAS, MAQUINARIA Y PROCEDIMIENTOS CONSTRUCTIVOS DE CIMENTACIONES Y ESTRUCTURAS, Métodos y equipos de excavación en túneles, Procedimientos constructivos de cimentaciones, sistemas de retención de tierras y anclajes    

Falso túnel entre pantallas. http://ecomovilidad.net/

Un falso túnel es una infraestructura que se construye cuando un obstáculo natural de escasa altura debe ser atravesado por una línea ferroviaria o por una carretera, de forma que no resulta conveniente perforar un túnel debido al escaso recubrimiento y al riesgo de que la construcción de una trinchera convencional pueda provocar desprendimientos. En otras ocasiones, la construcción de falsos túneles se justifica simplemente en la necesidad minimizar el impacto ambiental de la vía de comunicación, especialmente cuando el trazado pasa cerca de zonas urbanas.

Una forma de construir un falso túnel consiste en ejecutar unas pantallas, bien con pilotes o con una hidrofresa. Tras esas pantallas laterales, se ejecuta la losa de cubrición para formar el techo del túnel. Una vez fraguado el hormigón de la losa, se puede proceder a trabajar bajo tierra, vaciando la caverna generada entre las pantallas y la losa, hasta el nivel del suelo del túnel. La ejecución de pantallas con pilotes consiste en hacer “taladros” consecutivos, que luego son rellenados con acero y hormigón. Si utilizamos una hidrofresa el principio es el mismo, solo que la perforación es rectangular.

Si el falso túnel se realiza a una profundidad mayor de 5-10 m es necesario ejecutar losas intermedias, para garantizar la integridad de las pantallas laterales. Este método es muy seguro, habiéndose realizado bastantes kilómetros de todo tipo de túneles, por ejemplo en Madrid, tanto de metro (línea 11 en la avenida de Abrantes, línea 1 en la Calle Congosto…) como de cercanías (Pasillo verde, Getafe…) sin incidentes a reseñar. Incluso en terrenos particularmente complicados como es la vega del manzanares este método ha dado un gran rendimiento en la ejecución del soterramiento de la M30.

A continuación os paso una animación realizada por la empresa Proin 3D para Adif del túnel ferroviario de alta velocidad Barcelona Sants-La Sagrera, conocido también como túnel del Eixample. El túnel, que une la estación de Barcelona Sants con la futura estación de La Sagrera, forma parte de la línea de alta velocidad Madrid-Zaragoza-Barcelona-Frontera francesa.Fue inaugurado el 8 de enero de 2013 juntamente con el tramo entre Barcelona Sants y Figueras-Vilafant de la LAV Madrid-Barcelona-Franciay el 9 de enero de 2013 empezó su explotación comercial por trenes de Renfe Operadora.

En la animación podemos ver la ejecución del falso túnel, tanto con pilotadoras como con hidrofresas. Espero que os guste.

Referencias:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. ISBN: 978-84-9048-457-9.

4 diciembre, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  ,  |  

Publicada By  Víctor Yepes Piqueras - MAQUINARIA Y PROCEDIMIENTOS CONSTRUCTIVOS DE CIMENTACIONES Y ESTRUCTURAS, Procedimientos constructivos de cimentaciones, sistemas de retención de tierras y anclajes    

Cajon indio 2

Esquema de cajón abierto

Las cimentaciones con cajones abiertos, o cajones indios, se definen como aquellas realizadas a base de cajones abiertos por arriba y sin fondo, con su borde inferior biselado o con forma de cuchilla que se van hincando en el terreno por su propio peso o mediante lastre, a medida que se excava en su interior, mientras se recrecen sus paredes. Este proceso continúa hasta alcanzar la profundidad deseada. El cajón se fabrica total o parcialmente en su altura total a nivel del suelo. La sección de estos cajones es rectangular o circular. Este procedimiento es factible en terrenos blandos, debiendo tener precaución en el caso de excavar bajo nivel freático, de que no se produzca sifonamiento. En los casos en que sea necesario recurrir a bombas de agotamiento, las alcachofas de las mangueras se sitúan en pequeños pozos practicados en el fondo de la excavación. En el caso de no poder realizarse el agotamiento del agua, entonces se inyectan productos en el terreno para disminuir su permeabilidad.

Cajon indio 1

El rozamiento entre el elemento y el terreno circundante se puede reducir mediante una rendija anular rellena de bentonita, de un ancho entre 5 y 10 cm. Estas fuerzas de rozamiento crecen al incrementarse la profundidad, por lo que habrá que ir incrementando el peso de empuje del cajón. Una vez alcanzada la profundidad prevista, se tapona el fondo de la excavación con hormigón. Durante este proceso ha da estar garantizada en todo momento la resistencia frente al empuje hidrostático ascendente.

En el Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes del año 2000, en su artículo 674, se incluían las cimentaciones por cajones indios de hormigón armado, sin embargo, este artículo quedó suprimido posteriormente.

Cajon indio 3

Construcción de cajón abierto cilíndrico de 24 m de diámetro, con paredes de 1,20 m de espesor

Referencias:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. ISBN: 978-84-9048-457-9.

30 noviembre, 2017
 
|   Etiquetas: ,  ,  |  

Publicada By  Víctor Yepes Piqueras - Cimbras, andamios y encofrados, MAQUINARIA Y PROCEDIMIENTOS CONSTRUCTIVOS DE CIMENTACIONES Y ESTRUCTURAS, Procedimientos constructivos de cimentaciones, sistemas de retención de tierras y anclajes    

Cimbra PERI UP Rosett

Cimbra PERI UP Rosett

La cimbra es una estructura provisional que requiere su propio proyecto y cálculo, con una especial atención a las hipótesis de carga y los detalles de diseño y montaje. No son extraños los accidentes, especialmente con las cimbras diáfanas, por no existir un proyecto adecuado. Dicho proyecto y las operaciones de montaje y desmontaje de estos elementos suele depender de una empresa especializada. Se debe exigir que la cimbra sea estable, especialmente a pandeo y que las deformaciones previstas se puedan compensar con las contraflechas necesarias.

Muchos problemas en las cimbras se encuentran en el punto de encuentro entre las torres y el encofrado, pues esta transición no está normalizada. El encuentro consta de varios niveles de perfiles o tablones apoyados sobre horquillas que, normalmente, no son solidarias con el husillo que las soporta, lo cual puede provocar inestabilidad si no se monta adecuadamente. Un ejemplo son las cargas excéntricas sobre los husillos provocada por la colocación inclinada de los perfiles originada por la pendiente del tablero, que muchas veces no se consideran en el cálculo. Otra circunstancia no contemplada en los cálculos puede ser el mal reparto de las cargas en las patas de las torres por una mala colocación de los perfiles o los tablones. Todo ello lleva a que se tengan que adoptar coeficientes de seguridad elevados, normalmente de 2 cuando las condiciones de montaje son muy estrictas, e incluso de 3, tal y como propugna la norma ACI.

Otros aspectos de gran importancia son el arriostramiento horizontal e inclinado de las torres para evitar el pandeo y para resistir las cargas horizontales. Además, una cimentación de las torres sobre tablones mal asentados o poco rígidos incrementa significativamente el asiento diferencial y el consiguiente incremento de carga no previsto en alguno de los apoyos.

Os dejo a continuación un vídeo de una cimbra cuajada T-60 y ENKOFORM HMK – ULMA. Espero que os guste la animación.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

11 noviembre, 2017
 
|   Etiquetas: ,  |  

Publicada By  Víctor Yepes Piqueras - MAQUINARIA Y PROCEDIMIENTOS CONSTRUCTIVOS DE CIMENTACIONES Y ESTRUCTURAS, Procedimientos constructivos de cimentaciones, sistemas de retención de tierras y anclajes    

Los pilotes de desplazamiento se construyen sin extraer las tierras del terreno. Están constituidos, total o parcialmente, por elementos prefabricados que se introducen en el suelo sin excavarlo previamente mhincado13ediante un procedimiento denominado de forma genérica hinca. La introducción de un volumen adicional en el terreno produce una modificación significativa de su estado tensional.

En función del tipo y comportamiento del terreno el efecto de la hinca sobre el mismo es diferente. Así, se distingue claramente entre suelos granulares y suelos cohesivos:

  1.  En suelos granulares, la introducción de un volumen adicional hinca produce su compactación. Ello provoca, en general, una depresión en la superficie del terreno en la zona circundante al pilote.
  2. En suelos cohesivos, la hinca provoca una perturbación debido al aumento de las presiones intersticiales, el arrastre de una pirámide de suelo bajo la punta, la rotura de estratos intermedios, etc. Estas modificaciones suponen un comportamiento dependiente del tiempo del suelo cohesivo, por disipación de presiones intersticiales y, en general, su endurecimiento.

La hinca es el procedimiento de introducción de pilotes en el terreno mas antiguo –los primeros pilotes fueron de madera-. La hinca puede  realizarse con diferentes métodos o sistemas:

  • Hinca dinámica o por impacto. Se introduce el pilote en el terreno mediante una sucesión de golpes en la cabeza del mismo con unos equipos denominados martinetes o martillos. Es el método de hinca más versátil y más utilizado.
  • Hinca por vibración. Unos equipos denominados vibrohincadores. Su uso está prácticamente limitado a la hinca de perfiles metálicos, tanto de pilotes como de tablestacas.
  • Hinca por presión.

Pilotes prefabricados. Vía http://fernandeztadeo.com

Una vez hincado en el terreno, éste ejerce sobre el pilote y en toda su superficie lateral, una fuerza de adherencia que aumenta al continuar clavando mas pilotes en las proximidades, pudiendo conseguir mediante este procedimiento, una consolidación del terreno . Es por ello que la hinca de un grupo de pilotes se debe realizar siempre de dentro hacia afuera.

Existen en el mercado un buen número de tipos de pilotes  que pueden ser considerados como pilotes de desplazamiento atendiendo a los efectos que produce su introducción en el terreno. En su mayor parte, se trata de elementos prefabricados que son introducidos mediante  hinca, aunque hay otros, cuyas técnicas de ejecución son más similares a las de los pilotes de extracción que sin embargo deben ser considerados como pilotes de desplazamiento.

 Según la configuración del pilote, se pueden diferenciar dos grupos de pilotes de desplazamiento:

  • Pilotes de desplazamiento prefabricados. El pilote es un elemento estructural completamente prefabricado previamente y es introducido en el suelo  mediante hinca u otros sistemas. Dentro de este grupo están los pilotes de madera, de hormigón armado o pretensado y los pilotes metálicos.
  • Pilotes de desplazamiento hormigonados “in situ. Se introduce en el terreno mediante hinca u otro sistema, no el pilote sino un elemento auxiliar (tubo metálico con tapón en la punta o un tapón de gravas u hormigón). El hueco generado por la hinca de este elemento se rellena con hormigón fresco y armadura, generando el pilote propiamente dicho. El elemento auxiliar o parte de él puede ser posteriormente extraído. Dentro de este grupo están los pilotes de hormigón “in situ” con camisa prehincada, los pilotes de hormigón “in situ” apisonados tipo “Franki”, los pilotes roscados sin extracción de terreno y otros.

 

Un post para ampliar información sobre diseño y pruebas de pilotes prefabricados hincados podéis verlo en un artículo de Carlos Fernández Tadeo:  http://fernandeztadeo.com/WordPress/?p=2647

Os dejo a continuación un vídeo sobre la cconstrucción e hincado de pilotes de 40 x 40 cm de sección y 15,00 m de longitud en un tramo. Para mayor informacion: www.cimentacionesaplicadas.com

Referencias:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. ISBN: 978-84-9048-457-9.

9 noviembre, 2017
 

Publicada By  Víctor Yepes Piqueras - Control de la ejecución de las estructuras de hormigón, MAQUINARIA Y PROCEDIMIENTOS CONSTRUCTIVOS DE CIMENTACIONES Y ESTRUCTURAS, Procedimientos constructivos de cimentaciones, sistemas de retención de tierras y anclajes    

El control de ejecución de una obra es un aspecto fundamental que garantiza la durabilidad y el funcionamiento según el proyecto previsto. Un aspecto especialmente importante es el control de ejecución de las cimentaciones. En este post os dejo información al respecto.

Un enlace muy interesante que trata sobre el control de la ejecución de las cimentaciones superficiales es de Enrique Alario:  http://www.enriquealario.com/ejecucion-de-cimentaciones-superficiales/

Os paso un Polimedia de la profesora Esther Valiente relacionada con el control de calidad en la ejecución de las cimentaciones. Espero que os guste.

También lo tenéis en inglés:

Referencias:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp.

8 noviembre, 2017
 

Publicada By  Víctor Yepes Piqueras - MAQUINARIA Y PROCEDIMIENTOS CONSTRUCTIVOS DE CIMENTACIONES Y ESTRUCTURAS, Procedimientos constructivos de cimentaciones, sistemas de retención de tierras y anclajes    

CPI-6Los pilotes perforados sin entubación con fluidos estabilizadores, denominados CPI-6 en la nomenclatura de las NTE-1977, permiten excavar en terrenos inestables o con nivel freático alto, debido a las propiedades expansivas y tixotrópicas de los fluidos empleados, que ayudan a contener las paredes. Estos fluidos presentan propiedades tixotrópicas en la bentonita y propiedades iónicas en los polímeros.

Los fluidos estabilizadores pueden ser utilizados para estabilizar la excavación en toda su altura o bien una parte. Durante la construcción del pilote el nivel de lodos debe mantenerse en un nivel apropiado, siempre por encima del nivel freático al menos de 1,0 a 1,5 m. Este procedimiento es aplicable de preferencia en terrenos finos sin estratos granulares gruesos libres de matriz fina o grandes bloques.

Una vez acabada la perforación, se introduce la armadura y se hormigona utilizando la tubería tremie hasta el fondo de la perforación. La tubería se va subiendo a medida que se hormigona, procurando que su boca inferior esté embebida un mínimo de 4 m dentro de la columna ya hormigonada para evitar posibles cortes durante el hormigonado. La consistencia del hormigón debe ser fluida. Durante el hormigonado deben controlarse nuevamente las características de los lodos de bentonita para evitar contaminaciones en el hormigón. Los diámetros utilizados en este tipo son, según la NTE, de 45 a 125 cm, aunque la maquinaria actual permite pilotes de diámetros mayores.

Se pueden alcanzar profundidades superiores a 50 m, en función de las características del Kelly telescópico que sostiene la herramienta de perforación. Sin embargo hay que tener en cuenta la complicación que supone el uso de lodos bentoníticos a medida que aumenta la profundidad.

Su uso es habitual como pilotaje trabajando por punta, apoyado en roca o capas duras de terreno. Cuando se atreviesen capas blandas que se mantengan sin desprendimientos por efecto de los lodos.

Fases de ejecución:

  1. Excavación con cuchara y vertido de lodo en la excavación para extracción de la tierra.
  2. Cambio de lodo contaminado y limpieza del fondo del pilote
  3. Introducción de las armaduras.
  4. Hormigonado desde el fondo mediante tubo Tremie y recuperación del lodo.
  5. Pilote terminado.

 

 

Fases CPI-6

Para garantizar la estabilidad de la perforación, el nivel del lodo debe estar siempre próximo al nivel de coronación del murete-guía, debiéndose mantener constante, por lo que es preciso aportar lodos a medida que se excava el terreno. Además, se precisa una central de tratamiento de lodos que permita el control de la calidad de los lodos (mediante su viscosidad y contenido en finos) y la regeneración de los lodos contaminados.

Imagen1

Para la perforación y extracción de tierras se utilizan cucharas, barrenas cortas o buckets. Los restos de la excavación se van depositando en el fondo de la misma, por lo que es fundamental la limpieza de la punta del pilote. Para su limpieza se utilizan bombas de fondo que permiten la extracción del lodo contaminado y la incorporación de lodo regenerado. Pueden emplearse para ello sistemas de circulación directa que introducen lodos frescos por la punta que desplazan al lodo contaminado, que sale por la cabeza, o sistemas de circulación inversa que lo hacen aspirando el fango contaminado del fondo y alimentan con fango fresco por la cabeza.

A continuación os dejo un vídeo explicativo de la construcción de este tipo de pilotes.

Referencias:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

16 octubre, 2017
 

Publicada By  Víctor Yepes Piqueras - Infraestructuras hidráulicas, energéticas y de ingeniería sanitaria, MAQUINARIA Y PROCEDIMIENTOS CONSTRUCTIVOS DE CIMENTACIONES Y ESTRUCTURAS, Procedimientos constructivos de cimentaciones, sistemas de retención de tierras y anclajes, TIPOLOGÍAS DE OBRAS Y PLANTEAMIENTOS CONSTRUCTIVOS    

Aerogeneradores Bazan Bonus Mk. IV situados en el Parque éolico de Vicedo, a caballo entre el límite de los municipios de Viveiro y Vicedo (provincia de Lugo, España). Fotografía: Enrique Pernas Rouco. Wikipedia.

La demanda de energía renovable a nivel mundial se incrementa con la conciencia medioambiental. La energía eólica es una energía renovable que se está implantando fuertemente a nivel mundial. Se estima que la energía contenida en los vientos es aproximadamente el 2% del total de la energía solar que alcanza la tierra, lo que supone casi dos billones de toneladas equivalentes de petróleo al año (200 veces mayor de la que consumen todos los países del planeta), aunque en la práctica solamente podría ser utilizada una parte muy pequeña de esa cifra, por su aleatoriedad y dispersión, del orden del 5%. Según “The World Wind Energy Association”, la capacidad mundial eólica instalada alcanzó un nivel sin precedentes de más de 318 GW a finales de 2013, de los cuales aproximadamente 35 GW se añadieron en 2013, el nivel más alto registrado hasta la fecha. La energía eólica contribuye en cerca de un 4% en satisfacer la demanda de energía eléctrica mundial. Un total de 103 países están utilizando este tipo de energía desde el punto de vista comercial y se espera que la capacidad de generación de energía eólica pueda aumentar hasta 700 GW en el horizonte del año 2020. En España, la contribución de la eólica a la demanda eléctrica en el año 2010 representó el 16% del total y su objetivo es aumentar ese porcentaje en un futuro. Una sola turbina puede abastecer de electricidad a 500 hogares. Recientemente Huang y McElroy (2015) han realizado una revisión de las perspectivas de este tipo de energía en relación al cambio climático.

El aerogenerador se compone de tres partes: torre, rotor y álabes. En el generador eléctrico es donde se transforma el movimiento mecánico del rotor en energía eléctrica. Suele ser un generador asíncrono o de inducción, con una potencia máxima entre 500 y 1500 kW. Están diseñados generalmente para rendir al máximo a velocidades alrededor de 15 m/s. En el caso de vientos más fuertes es necesario gastar parte del exceso de la energía del viento para evitar daños en el aerogenerador. En consecuencia todos los aerogeneradores están diseñados con algún tipo de control de potencia. Los componentes de un aerogenerador están diseñados para durar 20 años. Esto significa que tendrán que resistir más de 120.000 horas de funcionamiento, a menudo bajo condiciones climáticas adversas (Gálvez, 2005). Respecto a las torres eólicas, se distinguen las “onshore”, instaladas en tierra, normalmente en grandes llanos o zonas elevadas y las “offshore”, cuya localización es dentro del mar, en zonas próximas a la costa.

aerogenerador

http://e-ducativa.catedu.es

Los aerogeneradores operan bajo regímenes de carga muy exigentes (Burton et al., 2001), cuyos efectos podrían disminuir la integridad estructural y llevar a costes de mantenimiento y reparación que podrían ser inaceptables. Rebelo et al (2014) abordan el estudio comparativo relativo la influencia del aumento de altura en el diseño estructural y los resultados de diferentes soluciones estructurales de un aerogenerador. Sus conclusiones son que el uso de secciones tubulares de acero y conexiones de brida son adecuadas para torres de hasta 80 m, mientras que las conexiones de fricción son mejores para torres más altas. En cuanto a las torres de hormigón, éstas dejan de ser competitivas por encima de 100 m de altura, especialmente por las dimensiones necesarias de la cimentación ante riesgo sísmico, que pueden incrementar el volumen de hormigón en cimientos hasta un 75%. Sin embargo, según refiere Lofty (2012), la prefabricación de la torre con hormigón es de gran interés a partir de los 75 m de altura. La fuerza vertical que actúa sobre la cimentación se debe fundamentalmente al peso propio de la torre, la góndola y las palas del rotor, incluso cierta fuera vertical provocada por el viento. Sin embargo, son preponderantes las fuerzas horizontales provocadas por el viento, generando un gran momento flector en la base debido a la gran altura de la torre. La torre suele ser prefabricada, en forma troncocónica, conectándose a la cimentación a través de una interfaz que suele ser un tubo de acero de grandes dimensiones insertado en el hormigón de la cimentación, aunque existen múltiples variantes en estos conectores.

http://www.inproin.com

Una de las partes fundamentales de un aerogenerador es la forma en que la torre se sujeta al terreno. La selección del tipo de cimiento dependerá fundamentalmente de la ubicación del aerogenerador y las condiciones del terreno. Según la European Wind Energy Association (2013), la cimentación supone aproximadamente el 6,5% del coste total para proyectos onshore y el 34% para proyectos offshore, lo que justifica una optimización de este tipo de estructuras (Horgan, 2013). Hoy en día, construimos la mayoría de las turbinas eólicas en tierra en suelos firmes y rígidos, pero probablemente las futuras torres eólicas se construirán sobre suelos con propiedades menos favorables. El cálculo de la cimentación depende de las cargas producidas por el rotor eólico en diferentes condiciones de operación, por esto la tecnología del aerogenerador juega un papel fundamental. La forma más habitual de cimentar un aerogenerador es una zapata de hormigón (Hassanzadeh, 2012). Tal y como indica Svensson (2010), las cimentaciones sobre losas de hormigón podrían dejar de ser adecuadas, pues grandes dimensiones provocan asientos diferenciales inaceptables. La altura de las torres puede variar mucho, entre 40 y 130 m. Cuanta más alta sea la torre, mayor velocidad de viento, y por tanto, mayor generación de energía.

Las torres de aerogeneradores se localizan en áreas con buenas condiciones de viento pero que, en numerosas ocasiones, se encuentran en terrenos inhóspitos o con malas condiciones de acceso, lo cual dificulta la ejecución de las cimentaciones de estas estructuras. Para anclar estas torres normalmente se utilizan los métodos: cimentaciones o zapatas que sujetan la estructura al terreno mediante gravedad, o bien mediante anclajes realizados sobre terrenos competentes. Se busca garantizar la estabilidad de la estructura y asegurar una transmisión de cargas al terreno con la adecuada intensidad para que este no colapse. En numerosas ocasiones los terrenos no permiten dicho anclaje, por lo que es habitual el uso de zapatas masivas realizadas con hormigón armado. No obstante, las geometrías empleadas en planta son muy diversas. Se utilizan soluciones con planta poligonal, circular e incluso cruciforme, siendo esta ultima un caso muy aislado. Herrando (2012) ha comprobado cómo para un aerogenerador tipo de 100 m de altura y 3,5MW de potencia, la cimentación superficial con geometría en planta circular es la que mejores resultados ofrece a nivel estructural y económico.

Cimentación prefabricada para torre eólica de la empresa Artepref. Fuente: Diario de Burgos

Cimentación prefabricada para torre eólica de la empresa Artepref. Fuente: Diario de Burgos

Las ventajas de la prefabricación son evidentes, reduciéndose incluso la cantidad de material necesario respecto a cimentaciones ejecutadas “in situ”. La prefabricación reduce los problemas de hormigonado in situ de grandes volúmenes, que no sólo generan problemas importantes cuando los accesos se encuentran alejados de las plantas de fabricación de hormigón e incrementan considerablemente el calor de hidratación en el fraguado del hormigón, sino que las temperaturas extremas pueden reducir el número de días de trabajo efectivo. Además, teniendo en cuenta que la vida útil de un aerogenerador puede ser de 20 a 25 años, la prefabricación facilita la fase de desmantelamiento de las instalaciones. Se han generado en el mercado cimentaciones alternativas donde una parte o la totalidad de la cimentación se realizan con piezas prefabricadas. Así, algunas patentes europeas y americanas, como por ejemplo, DK200100030 (2001) y WO2004101898A2 (2004), han desarrollado soluciones de cimentación prefabricadas para el caso de pequeñas instalaciones, no quedando claro que alguna de estas soluciones se hayan construido realmente (Nilsson, 2012). Empresas como Gestamp Hybrid Towers ofrecen diseños de cimentaciones prefabricadas para torres en forma de T invertida que pretende ofrecer eficiencia y ductilidad a la solución. La empresa burgalesa ARTEPREF patentó también una cimentación prefabricada para este tipo de torres. Además, estas soluciones suelen unir las piezas prefabricadas mediante hormigón fresco. Por tanto, el elemento clave en el diseño de este tipo de cimentaciones son la forma con la que se resuelven las juntas para convertir las piezas en un conjunto monolítico y también la conexión o “brida” de la torre con la cimentación (Hassanzadeh, 2012). Bellmer (2010) advierte de que gran parte de los problemas de durabilidad de los aerogeneradores se deben a un mal diseño de la cimentación. Currie et al (2013) presentan una solución para monitorizar las cimentaciones de estas torres. Eneland y Mallberg (2013) advierten de la gran dificultad que existe en diseñar un método de cálculo para las juntas de las piezas prefabricadas de este tipo de cimentaciones. Asimismo, una de las claves es la justificación de la viabilidad económica de los elementos frente a las cimentaciones ejecutadas “in situ”.

Referencias:

  • BURTON, T.; SHARPE, S.; JENKINS, N.; BOSSANYI, E. (2001). Wind Energy Handbook. Wiley, Chichester, UK, pp. 211–219.
  • BELLMER, H. (2010). Probleme im Bereich Stahlturm – Fundament, 3rd Technical Conference – Towers and Foundations for Wind Energy Converters, HAUS DER TECHNIK, Essen, Germany.
  • CURRIE, M.; SAAFI, M.; TACHTATZIS, C.; QUALI, F. (2013). Structural health monitoring for wind turbine foundations. Proceedings of the Institution of Civil Engineers, Paper 1200008.
  • DK200100030 (2001). Stjernefundament med elementer til foundering af tårne. Patent
  • ENELAND, E.; MALLBERG, L. (2013). Prefabricated foundation for wind power plants. A conceptual design study. Thesis in the Master’s Programme Structural Engineering and Building Technology, Chalmers University of Technology, Sweden.
  • GÁLVEZ, R. (2005). Diseño y cálculo preliminar de la torre de un aerogenerador. Proyecto Fin de Carrera, Universidad Carlos III de Madrid, Departamento de Mecánica de Medios Continuos y Teoría de Estructuras.
  • HASSANZADEH, M. (2012). Cracks in onshore wind power foundations. Causes and consequences. Stockholm: Elforsk (Elforsk Rapport, 11.56).
  • HERRANDO, V. (2012). Optimización del diseño de la cimentación para un aerogenerador de gran altura. Trabajo Fin de Carrera, Universitat Politècnica de Calalunya.
  • HORGAN, C. (2013). Using energy payback time to optimise onshore and offshore wind turbine foundations. Renewable Energy, 53:287-298.
  • HUANG, J.; McELROY, M.B. (2015). A 32-year perspective on the origin of wind energy in a warming climate. Renewable Energy, 77:482-492.
  • LOFTY, I. (2012). Prestressed concrete wind turbine supporting system. Master’s Dissertation, University of Nebraska, USA.
  • NILSON, M. (2012). Prefabricated foundations with cell reinforcement for land-based wind turbines. . Stockholm: Elforsk (Elforsk Rapport, 13:06).
  • REBELO, C.; MOURA, A.; GERVÁSIO, H.; VELJKOVIC, M.; SIMOES DA SILVA, L. (2014). Comparative life cycle assessment of tubular wind towers and foundations – Part 1: Structural design. Engineering Structures, 74:283-291.
  • SVENSSON, H. (2010). Design of foundations for wind turbines. Master’s Dissertation, Department of Construction Sciences, Lund University, Sweden.
  • The World wind energy association 2013 report. April 2014. Bonn, Germany. http://refhub.elsevier.com/S0960-1481(14)00872-6/sref1
  • WO2004101898A2 (2004). Foundation for a wind energy plant. Patent

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

13 octubre, 2017
 

Publicada By  Víctor Yepes Piqueras - CANTERAS E INSTALACIONES PARA TRATAMIENTO DE ÁRIDOS, Localización y extracción de áridos, MAQUINARIA Y PROCEDIMIENTOS CONSTRUCTIVOS DE CIMENTACIONES Y ESTRUCTURAS, Procedimientos constructivos de cimentaciones, sistemas de retención de tierras y anclajes    

http://www.ecoproyectosweb.com

El conocimiento de las características del terreno es un requisito previo ante cualquier proyecto u obra de ingeniería civil o edificación. Para ello es necesario acometer la redacción de un estudio geotécnico, cuyos objetivos serán definir la tipología y las dimensiones de los cimientos y obras de contención, así como determinar los problemas constructivos relacionados con  los materiales o con el agua presente. La extensión y el nivel de información necesario en un reconocimiento geotécnico dependen directamente del proyecto u obra a realizar, y de las características del terreno donde se sitúa. En el estudio geotécnico se plasman los resultados de la campaña realizada, su interpretación y las conclusiones que se derivan de su análisis, generalmente en forma de recomendaciones para el proyecto y construcción de la obra.

Para entender mejor cómo se realiza este estudio, os dejo un objeto de aprendizaje, cuyo autor es el profesor José Ramón Ruíz Checa, de la Universitat Politècnica de València. El vídeo se refiere a los conceptos básicos de estudio geotécnico, en particular sobre la programación en la redacción y contenido de dicho estudio. Espero que os sea de interés.

 

10 octubre, 2017
 
|   Etiquetas: ,  ,  |  

Publicada By  Víctor Yepes Piqueras - EQUIPOS DE SONDEO Y PROCEDIMIENTOS DE MEJORA DE TERRENOS, Maquinaria para sondeos y perforaciones, MAQUINARIA Y PROCEDIMIENTOS CONSTRUCTIVOS DE CIMENTACIONES Y ESTRUCTURAS, Procedimientos constructivos de cimentaciones, sistemas de retención de tierras y anclajes    

El Pilote CPI-8 es un  pilote perforado con barrena continua tipo hélice hasta la profundidad solicitada (“Continuous Flight Auger“, CFA). Se trata de un pilote muy usado en España, siempre que tratemos con terrenos flojos, como arenas o arcillas. Se hormigona a través del núcleo de la barrena, mientras ésta se va extrayendo, para posteriormente colocar la armadura en hormigón fresco con el apoyo de un vibrador hidráulico (lo cual implica una consistencia blanda del hormigón). La punta de la barrena queda introducida varios diámetros dentro del hormigón durante su puesta en obra. Este procedimiento resulta muy interesante respecto a otras tipologías en cuanto al tiempo de ejecución. Los diámetros habituales son de 350 a 1200 mm.

Se recomienda una dosificación mínima de cemento de 380 Kg/m3 y un cono de 18 a 20 cm, con un árido máximo de 12 mm si es de cantera y 20 mm si es de gravera. Es muy importante garantizar una correcta bombealibidad del hormigón para introducirlo a través de la barrena.

El pilote CPI-8 presenta numerosas ventajas que hacen que sea una tipología muy empleada en cimentaciones profundas. Entre otras se pueden destacar las siguientes:

• No es necesario el uso de una entubación o de lodos tixotrópicos en terrenos inestables, pues la propia barrena permite la contención del terreno.
• Se puede controlar en todo momento la presión y volumen de hormigonado.
• Permiten realizar el empotramiento del pilote en estratos consistentes.
• Elevado rendimiento, lo que permite plazos de obra muy razonables.

En cuanto a las fases de ejecución, son las propias del pilotaje con barrena continua:

• Posicionamiento y aplome de la máquina para garantizar la verticalidad en la perforación.
• Perforación hasta la profundidad especificada.
• Bombeo del hormigón por el interior de la barrena y extracción simultánea de la barrena helicoidal, que lleva alojada en sus álabes el terreno perforado. El hormigón se encuentra en todo momento en contacto con la barrena helicoidal. Debe combinarse la velocidad de ascensión de la barrena, el caudal y la presión del hormigón para evitar cortes en el fuste del pilote o sobresecciones y excesos de hormigón innecesarios.
• Colocación de la armadura en el hormigón.

A continuación tenéis un Polimedia donde se explica la construcción de este tipo de pilotes.

Os dejo una colección de vídeos, algunos seleccionados por Juan José Rosas  en su blog que espero que os gusten.

Referencias:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. ISBN: 978-84-9048-457-9.

7 octubre, 2017
 

Publicada By  Víctor Yepes Piqueras - MAQUINARIA Y PROCEDIMIENTOS CONSTRUCTIVOS DE CIMENTACIONES Y ESTRUCTURAS, Procedimientos constructivos de cimentaciones, sistemas de retención de tierras y anclajes    

Las obras hechas con grandes bloques de piedra son habituales en la construcción civil. Una primera clasificación atiende a su modo de ejecución. Así tenemos las vertidas (diques rompeolas), las compactadas (pedraplenes, presas, etc.) o las colocadas (muros). A este último caso nos referimos en este post.

Los muros de escollera son los formados por grandes bloques pétreos, obtenidos generalmente mediante voladura y de forma más o menos prismática y superficies rugosas.

El Ministerio de Fomento ha editado una guía  (descargar) para el proyecto y la ejecución de este tipo de muros. En dicho documento, se entienden por muros de escollera colocada, los constituidos por bloques de roca  irregulares, de forma poliédrica, sin labrar y de gran tamaño (masa comprendida entre 300 y 3000 kg), que se colocan uno a uno mediante maquinaria específica, con funciones de contención o sostenimiento.

Ejemplo de definición geométrica. http://construblogspain.wordpress.com/

Os paso a continuación algunos vídeos para que veáis el proceso constructivo de esta unidad de obra.

Referencias:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. ISBN: 978-84-9048-457-9.

 

27 septiembre, 2017
 
|   Etiquetas: ,  ,  |  

Página siguiente »

Universidad Politécnica de Valencia