UPV



Resultados de la búsqueda By Etiquetas: acero


Puentes de acero inoxidable

Harry Brearley (1871-1948)

El acero inoxidable, inventado en la primera década del siglo XX por Harry Brarley, presenta características de resistencia a la corrosión que los diferencia de los aceros convencionales al carbono. Estos aceros presentan un contenido mínimo de un 11% de cromo, aunque suele añadírsele también níquel. El acero inoxidable no es un material desconocido, aunque como se verá a continuación, ha sido poco empleado en obras civiles. Se puede encontrar en usos domésticos o en amplios usos industriales como plantas químicas, componentes de automoción o aeronáutica. Baddoo (2008) indica que el consumo mundial de acero inoxidable ha crecido al 5% anual durante los últimos 20 años, sobrepasando el crecimiento de otro tipo de materiales. Respecto a los últimos adelantos en los aceros inoxidables en cuanto a material, se recomienda la revisión realizada por Lo et al. (2009).

No sólo el aspecto estético, sino la facilidad del mantenimiento, es la que ha hecho de este material un referente en la arquitectura en aspectos no relacionados directamente con la resistencia estructural. Resulta curiosa la falta de experiencia y realizaciones con este material en el ámbito de la ingeniería civil, y en especial, de las estructuras como los puentes (aunque algunos pueden citarse en España, como el de Abandoibarra en Bilbao o el de Cala Galdana en Menorca). Y eso que determinados puentes, especialmente los situados en zonas costeras, presentan una degradación extraordinaria y unos costes de mantenimiento elevados (Cramer et al., 2002). Una revisión de la aplicación de los nuevos materiales en la ingeniería civil puede verse en el trabajo de Flaga (2000).

Pasarela de Abandoibarra. Bilbao (1996).

La falta de experiencia en el uso del acero inoxidable en su aspecto estructural deriva, tal y como indican Real y Mirambell (2000), de una falta de especificaciones de diseño que fomenten el uso de este material. Esta es, quizás, una de las limitaciones técnicas más importantes existentes en la actualidad. En efecto, una de las claves que diferencian al acero inoxidable del convencional es la no linealidad de su ecuación constitutiva, incluso a bajos niveles de tensión, así como una pronunciada respuesta al trabajo en frío. De hecho, el límite elástico de estos aceros no está bien definido, debiéndose asociar al 0,2% de su deformación (Gedge, 2008). Hoy día estos aceros son de gran interés, incluso en el campo del hormigón estructural, donde, tal y como indican Cobos et al. (2011), un incremento del 10% en el coste inicial en la construcción de un puente de hormigón estructural con armaduras inoxidables puede elevar a más de 120 años la vida útil en servicio en zonas costeras, altamente corrosivas. Pérez-González (2008) refiere al uso del acero inoxidable procedente de desecho como armaduras para losas de hormigón.

Loa aceros inoxidables pueden dividirse según su estructura metalúrgica en austeníticos, ferríticos, martensínicos, dúplex y de precipitación-endurecimiento. De ellos, los austeníticos y los dúplex son los más empleados en estructuras. En ellos, los niveles de resistencia aumentan con el trabajado en frío, si bien se reduce la ductibilidad. Una de las características más interesantes es la resistencia a la corrosión bajo tensión, típica de las estructuras sometidas a factores ambientales, siendo los aceros dúplex normalmente mejores que los austeníticos. Es por ello que el acero dúplex es el idóneo para su uso en puentes y pasarelas (ver Sobrino, 2006). Sin embargo, dentro de esta familia de aceros, el tipo idóneo de acero dúplex dependerá de las condiciones ambientales específicas, propiedades mecánicas necesarias, acabado superficial, etc. Por ejemplo, en la construcción del puente de Cala Galdana de Menorca, se utilizó un acero inoxidable dúplex tipo 1.4462. Baddo y Kosmac (2011) se refieren al acero dúplex como el idóneo en la construcción de puentes, especialmente los 1.4462, 1.4362 y 1.4162, según la nomenclatura EN 10088-4 (2009).

Puente de Cala Galdana, Menorca (vía puentemanía.com)

Un referente reciente respecto al diseño con acero inoxidable estructural es el manual realizado por Euro Inox y el Steel Construction Institute (2006), ahora en su tercera edición. Este manual presenta recomendaciones basadas en el método de los estados límite y, donde se considera adecuado, en el Eurocódigo 3 Proyecto de estructuras de acero. Este manual presenta una interesante Parte II donde se muestran ejemplos de dimensionamiento. Sin embargo, la actual Instrucción de Acero Estructural EAE (Ministerio de Fomento, 2011), en su Artículo 2 de ámbito de aplicación, excluye los aceros inoxidables, lo cual mantenía cierto impedimento a la extensión del uso de este material. Afortunadamente, en diciembre de 2012 salió a la luz la norma UNE-EN 1993-1-4 (Eurocódigo 3 – Proyecto de estructuras de acero, Parte 1-4 Reglas generales – Reglas adicionales para los Aceros Inoxidables).

Otra de las consideraciones de especial relevancia con respecto a los aceros inoxidables se refiere a los procesos constructivos y de montaje de estas estructuras cuando se comparan con los aceros convencionales. De hecho, las técnicas de corte, doblado, soldeo o acabado son distintas a las habituales. Así, los aceros dúplex presentan cierta dificultad añadida en relación con la realización de soldaduras. Además, para evitar la corrosión galvánica, los aceros inoxidables no deben entrar en contacto con otro tipo de metales.

Gate Arch de Missouri

La revisión realizada por Gedge (2008) respecto a los usos actuales que tiene el acero estructural en la construcción y en la ingeniería civil deja a las claras que, si bien no existe una gran tradición constructora con este tipo de material, también es cierto que las mayores exigencias relacionadas con la durabilidad de los materiales y la vida útil de las estructuras están reconsiderando al alza el uso de este material. Otra revisión del estado del conocimiento muy actual es la realizada por Baddoo (2008), en la que se centra no sólo en los aspectos de fabricación del material, sino en otros como el diseño y las realizaciones. El Gateway Arch de Missouri inspiró gran parte de la investigación del comportamiento structural del acero inoxidable en los primeros años de la década de los 60, de modo que la primera norma sobre este material estructural se publicó en 1968 por el AISI (1968).

La experiencia en el uso del acero inoxidable en puentes y pasarelas va en aumento, no sólo en España, sino a nivel internacional. En la publicación de Baddo y Kosmac podemos encontrar 20 puentes construidos con acero inoxidable desde el año 1999 al año 2011, lo cual son cifras pequeñas, pero ya significativas. A este respecto, hay que señalar que, en el año 2003, se realizó la sustitución de los tirantes de un puente arco ferroviario de tablero colgado en Kungälv, Suecia, con acero inoxidable Duplex 1.4462. Este puente se construyó en 1995 y tuvo que realizarse la sustitución en el año 2003 (Baddo y Kosmac, 2011). Baddo (2008) también se refiere al recubrimiento usado en el puente colgante de Tsing Ma Bridge de Hong Kong, siendo éste un puente usado tanto para el tráfico rodado como para el ferroviario. También en Hong Kong se ha utilizado el acero inoxidable Duplex para realizar las torres de puente colgante de Stonecutters, pues su altura superior a 120 m dificultaría el mantenimiento posterior (Hui y Wong, 2007). Por tanto, si bien es cierto que no se ha encontrado un puente ferroviario “íntegramente” construido con acero inoxidable, también es cierto que este material se ha usado ya como parte integrante en este tipo de puentes.

Tsing Ma Bridge de Hong Kong

En cuanto al diseño de puentes de ferrocarril, ésta ha cambiado profundamente en las últimas tres décadas, sobre todo con el empleo de potentes herramientas de cálculo, tanto en hardware como en software (Sobrino y Gómez, 2004). El cálculo de puentes ferroviarios presenta peculiaridades como las elevadas sobrecargas, con trenes que pueden circular a velocidades muy elevadas, requerimientos de elevada rigidez estructural para garantizar la comodidad al usuario y reducir el mantenimiento de la vía, problemas de fatiga, fenómenos de interacción vía-tablero, efectos térmicos, etc. En España es reseñable el primer puente ferroviario realizado en acero inoxidable, instalado en la zona de Añorga Txiki de San Sebastión, en el tramo Añorga-Rekalde.

Referencias:

  • AMERICAN IRON AND STEEL INSTITUTE (1968). Specification for the Design of Light Gauge Cold-Formed Stainless Steel Structural Members.
  • ARCELORMITTAL. Stainless steel in bridges and footbridges. http://www.constructalia.com/english/publications/technical_guides/stainless_steel_in_bridges_and_footbridges
  • AZUMA, S.; OGAWA, K. (1998). Duplex stainless steel excellent in corrosion resistance, Applied Thermal Engineering 18(6): XXIV.
  • BADDO, N.R. (2008). Stainless steel in construction: A review of research, applications, challenges and opportunities. Journal of Constructional Steel Research, 64:1199-1206.
  • BADDOO, N.R.; KOSMAC, A. (2011) Sustainable duplex stainless steel bridges. http://www.worldstainless.org/ISSF/Files/Sustainable%20Duplex%20Stainless%20Steel%20Bridges.pdf
  • BELETSKI, A. (2008). Applicability of stainless steel in road infrastructure bridges by applying life cycle costing. Masters Thesis, Helsinki University of Technology.
  • COBO, A.; BASTIDAS, D.M.; GONZÁLEZ, M.N.; MEDINA, E.; BASTIDAS, J.M. (2011). Ductibilidad del acero inoxidable bajo en níquel para estructuras de hormigón armado. Materiales de Construcción, 61(304): 613-620.
  • CRAMER, S.D. et al. (2002). Corrosion prevention and remediation strategies for reinforced concrete coastal bridges. Cement & Concrete Composites, 24:101-117.
  • EN 10088-4 (2009). Stainless steels. Technical delivery conditions for sheet/plate and strip of corrosion resisting steels for construction purposes.
  • EURO INOX (2005). Puentes peatonales en acero inoxidable. Serie Construcción, Vol. 7. ISBN: 2-87997-101-2.
  • EURO INOX (2007). Puente en Cala Galdana, Menorca. www.euro-inox.org
  • EURO INOX; THE STEEL CONSTRUCTION INSTITUTE (2006). Manual de diseño para acero inoxidable estructural. Tercera edición. Serie de construcción, vol. 11, Luxemburgo, Londres. ISBN 2-87997-207-8.
  • FERNÁNDEZ-ORDOÑEZ, J.A. (1996). La nueva pasarela de Abandoibarra. Revista de Obras Públicas, 3353:37-49.
  • FLAGA, K. (2000). Advances in materials applied in civil engineering. Journal of Materials Processing Technology, 106: 173-183.
  • GEDGE, G. (2008). Structural uses of stainless steel-buildings and civil engineering. Journal of Constructional Steel Research, 64:1194-1198.
  • HUI, M.C.H.; WONG, C.K.P. (2007). Stonecutters Bridge – durability, maintenance and safety considerations. Structure and Infrastructure Engineering, 5(3):229-243.
  • LO, K.H.; SHEK, C.H.; LAI, J.K.L. (2009). Recent developments in stainless steels. Material Science and Engineering R, 65:39-104.
  • MINISTERIO DE FOMENTO (2011). EAE Instrucción de Acero Estructural. Secretaría General Técnica.
  • MUÑOZ, E.; DAZA, R.D.; SALAZAR, F. (2002). Metodología de evaluación estructural de puentes metálicos por técnicas de fiabilidad estructural. Revista Ingeniería de Construcción, 17(1):44-52.
  • PASCUAL, J.; RIPA, T.; MILLANES, F. (2004). Algunas singularidades del acero inoxidable como material estructural. Congreso de la estructura de acero CEA 2004, La Coruña, pp. 220-238.
  • PÉREZ-GONZÁLEZ, J.A. (2008). Losas de concreto reforzadas con acero inoxidable de desecho. Revista Ingeniería de la Construcción, 23(2):72-81.
  • REAL, E.; MIRAMBELL, E. (2000). Estudio experimental del comportamiento a flexión de vigas de acero inoxidable. Hormigón y Acero, 216: 75-85.
  • REAL, E.; MIRAMBELL, E. (2005). Flexural behaviour of stainless steel beams. Engineering Structures, 27:1465-1475.
  • SOBRINO, J.A. (2006). Puente de acero inoxidable en Cala Galdana (Menorca). Revista de Obras Públicas, 3463:11-24.
  • SOBRINO, J.A.; GÓMEZ, M.D. (2004). Aspectos significativos de cálculo en el proyecto de puentes de ferrocarril. Revista de Obras Públicas, 3445:7-18.

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

21 agosto, 2017
 
|   Etiquetas: ,  ,  |  

Evolución histórica de los materiales

La ingeniería civil no podría entenderse sin su relación con los materiales de construcción. Históricamente, el desarrollo y la evolución de las sociedades ha estado relacionada con la capacidad de sus miembros para producir y conformar los materiales necesarios para satisfacer sus necesidades. Los materiales de construcción han servido el hombre para mejorar su calidad de vida o simplemente para subsistir, y junto con la energía han sido utilizados por el hombre para mejorar su condición. Los prehistoriadores han encontrado útil clasificar las primeras civilizaciones a partir de algunos materiales usados: Edad de Piedra, Edad del Cobre, Edad de Bronce, Edad del Hierro. Esta última secuencia parece universal en todas las áreas, ya el uso del hierro requiere una tecnología más compleja que la asociada a la producción de bronce, que a su vez requiere mayor tecnificación que el uso de la piedra.  A lo largo de la historia se han ido empleando distintos materiales en su construcción, evolucionando estos hasta la utilización actualmente de materiales compuestos formados por fibras de materiales muy resistentes. Madera, piedra, hierro, hormigón, ladrillo y aluminio han sido los materiales utilizados con más frecuencia en la construcción de todo tipo de estructuras. Actualmente se prueban nuevos materiales para construir puentes con mayor resistencia específica que el acero. Son los denominados materiales compuestos, formados por fibras unidas con una matriz de resina y que se vienen utilizando desde hace años en diversos tipos de industrias (aeroespacial, aeronáutica, automóvil, etc.). (más…)

18 julio, 2014
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  |  

El acero

Histórico horno Bessemer. Wikipedia

El término acero sirve comúnmente para denominar, en ingeniería metalúrgica, a una aleación de hierro con una cantidad de carbono variable entre el 0,03% y el 1,075% en peso de su composición, dependiendo del grado. Si la aleación posee una concentración de carbono mayor al 2,0% se producen fundiciones que, en oposición al acero, son mucho más frágiles y no es posible forjarlas sino que deben ser moldeadas. El acero conserva las características metálicas del hierro en estado puro, pero la adición de carbono y de otros elementos tanto metálicos como no metálicos mejora sus propiedades físico-químicas.

A continuación os voy a pasar unos vídeos al respecto que espero os sean útiles.

Composición del acero. Tipos más comunes, Comercialización de algunos materiales hechos con acero

Propiedades físicas, térmicas y ópticas del acero.

Propiedades mecánicas y tecnológicas del acero, corrosión.

18 febrero, 2014
 
|   Etiquetas: ,  ,  |  

Universidad Politécnica de Valencia