UPV



Resultados de la búsqueda By Etiquetas: cimentaciones


Cimentaciones prefabricadas en aerogeneradores

Aerogeneradores Bazan Bonus Mk. IV situados en el Parque éolico de Vicedo, a caballo entre el límite de los municipios de Viveiro y Vicedo (provincia de Lugo, España). Fotografía: Enrique Pernas Rouco. Wikipedia.

La demanda de energía renovable a nivel mundial se incrementa con la conciencia medioambiental. La energía eólica es una energía renovable que se está implantando fuertemente a nivel mundial. Se estima que la energía contenida en los vientos es aproximadamente el 2% del total de la energía solar que alcanza la tierra, lo que supone casi dos billones de toneladas equivalentes de petróleo al año (200 veces mayor de la que consumen todos los países del planeta), aunque en la práctica solamente podría ser utilizada una parte muy pequeña de esa cifra, por su aleatoriedad y dispersión, del orden del 5%. Según “The World Wind Energy Association”, la capacidad mundial eólica instalada alcanzó un nivel sin precedentes de más de 318 GW a finales de 2013, de los cuales aproximadamente 35 GW se añadieron en 2013, el nivel más alto registrado hasta la fecha. La energía eólica contribuye en cerca de un 4% en satisfacer la demanda de energía eléctrica mundial. Un total de 103 países están utilizando este tipo de energía desde el punto de vista comercial y se espera que la capacidad de generación de energía eólica pueda aumentar hasta 700 GW en el horizonte del año 2020. En España, la contribución de la eólica a la demanda eléctrica en el año 2010 representó el 16% del total y su objetivo es aumentar ese porcentaje en un futuro. Una sola turbina puede abastecer de electricidad a 500 hogares. Recientemente Huang y McElroy (2015) han realizado una revisión de las perspectivas de este tipo de energía en relación al cambio climático.

El aerogenerador se compone de tres partes: torre, rotor y álabes. En el generador eléctrico es donde se transforma el movimiento mecánico del rotor en energía eléctrica. Suele ser un generador asíncrono o de inducción, con una potencia máxima entre 500 y 1500 kW. Están diseñados generalmente para rendir al máximo a velocidades alrededor de 15 m/s. En el caso de vientos más fuertes es necesario gastar parte del exceso de la energía del viento para evitar daños en el aerogenerador. En consecuencia todos los aerogeneradores están diseñados con algún tipo de control de potencia. Los componentes de un aerogenerador están diseñados para durar 20 años. Esto significa que tendrán que resistir más de 120.000 horas de funcionamiento, a menudo bajo condiciones climáticas adversas (Gálvez, 2005). Respecto a las torres eólicas, se distinguen las “onshore”, instaladas en tierra, normalmente en grandes llanos o zonas elevadas y las “offshore”, cuya localización es dentro del mar, en zonas próximas a la costa.

aerogenerador

http://e-ducativa.catedu.es

Los aerogeneradores operan bajo regímenes de carga muy exigentes (Burton et al., 2001), cuyos efectos podrían disminuir la integridad estructural y llevar a costes de mantenimiento y reparación que podrían ser inaceptables. Rebelo et al (2014) abordan el estudio comparativo relativo la influencia del aumento de altura en el diseño estructural y los resultados de diferentes soluciones estructurales de un aerogenerador. Sus conclusiones son que el uso de secciones tubulares de acero y conexiones de brida son adecuadas para torres de hasta 80 m, mientras que las conexiones de fricción son mejores para torres más altas. En cuanto a las torres de hormigón, éstas dejan de ser competitivas por encima de 100 m de altura, especialmente por las dimensiones necesarias de la cimentación ante riesgo sísmico, que pueden incrementar el volumen de hormigón en cimientos hasta un 75%. Sin embargo, según refiere Lofty (2012), la prefabricación de la torre con hormigón es de gran interés a partir de los 75 m de altura. La fuerza vertical que actúa sobre la cimentación se debe fundamentalmente al peso propio de la torre, la góndola y las palas del rotor, incluso cierta fuera vertical provocada por el viento. Sin embargo, son preponderantes las fuerzas horizontales provocadas por el viento, generando un gran momento flector en la base debido a la gran altura de la torre. La torre suele ser prefabricada, en forma troncocónica, conectándose a la cimentación a través de una interfaz que suele ser un tubo de acero de grandes dimensiones insertado en el hormigón de la cimentación, aunque existen múltiples variantes en estos conectores.

http://www.inproin.com

Una de las partes fundamentales de un aerogenerador es la forma en que la torre se sujeta al terreno. La selección del tipo de cimiento dependerá fundamentalmente de la ubicación del aerogenerador y las condiciones del terreno. Según la European Wind Energy Association (2013), la cimentación supone aproximadamente el 6,5% del coste total para proyectos onshore y el 34% para proyectos offshore, lo que justifica una optimización de este tipo de estructuras (Horgan, 2013). Hoy en día, construimos la mayoría de las turbinas eólicas en tierra en suelos firmes y rígidos, pero probablemente las futuras torres eólicas se construirán sobre suelos con propiedades menos favorables. El cálculo de la cimentación depende de las cargas producidas por el rotor eólico en diferentes condiciones de operación, por esto la tecnología del aerogenerador juega un papel fundamental. La forma más habitual de cimentar un aerogenerador es una zapata de hormigón (Hassanzadeh, 2012). Tal y como indica Svensson (2010), las cimentaciones sobre losas de hormigón podrían dejar de ser adecuadas, pues grandes dimensiones provocan asientos diferenciales inaceptables. La altura de las torres puede variar mucho, entre 40 y 130 m. Cuanta más alta sea la torre, mayor velocidad de viento, y por tanto, mayor generación de energía.

Las torres de aerogeneradores se localizan en áreas con buenas condiciones de viento pero que, en numerosas ocasiones, se encuentran en terrenos inhóspitos o con malas condiciones de acceso, lo cual dificulta la ejecución de las cimentaciones de estas estructuras. Para anclar estas torres normalmente se utilizan los métodos: cimentaciones o zapatas que sujetan la estructura al terreno mediante gravedad, o bien mediante anclajes realizados sobre terrenos competentes. Se busca garantizar la estabilidad de la estructura y asegurar una transmisión de cargas al terreno con la adecuada intensidad para que este no colapse. En numerosas ocasiones los terrenos no permiten dicho anclaje, por lo que es habitual el uso de zapatas masivas realizadas con hormigón armado. No obstante, las geometrías empleadas en planta son muy diversas. Se utilizan soluciones con planta poligonal, circular e incluso cruciforme, siendo esta ultima un caso muy aislado. Herrando (2012) ha comprobado cómo para un aerogenerador tipo de 100 m de altura y 3,5MW de potencia, la cimentación superficial con geometría en planta circular es la que mejores resultados ofrece a nivel estructural y económico.

Cimentación prefabricada para torre eólica de la empresa Artepref. Fuente: Diario de Burgos

Cimentación prefabricada para torre eólica de la empresa Artepref. Fuente: Diario de Burgos

Las ventajas de la prefabricación son evidentes, reduciéndose incluso la cantidad de material necesario respecto a cimentaciones ejecutadas “in situ”. La prefabricación reduce los problemas de hormigonado in situ de grandes volúmenes, que no sólo generan problemas importantes cuando los accesos se encuentran alejados de las plantas de fabricación de hormigón e incrementan considerablemente el calor de hidratación en el fraguado del hormigón, sino que las temperaturas extremas pueden reducir el número de días de trabajo efectivo. Además, teniendo en cuenta que la vida útil de un aerogenerador puede ser de 20 a 25 años, la prefabricación facilita la fase de desmantelamiento de las instalaciones. Se han generado en el mercado cimentaciones alternativas donde una parte o la totalidad de la cimentación se realizan con piezas prefabricadas. Así, algunas patentes europeas y americanas, como por ejemplo, DK200100030 (2001) y WO2004101898A2 (2004), han desarrollado soluciones de cimentación prefabricadas para el caso de pequeñas instalaciones, no quedando claro que alguna de estas soluciones se hayan construido realmente (Nilsson, 2012). Empresas como Gestamp Hybrid Towers ofrecen diseños de cimentaciones prefabricadas para torres en forma de T invertida que pretende ofrecer eficiencia y ductilidad a la solución. La empresa burgalesa ARTEPREF patentó también una cimentación prefabricada para este tipo de torres. Además, estas soluciones suelen unir las piezas prefabricadas mediante hormigón fresco. Por tanto, el elemento clave en el diseño de este tipo de cimentaciones son la forma con la que se resuelven las juntas para convertir las piezas en un conjunto monolítico y también la conexión o “brida” de la torre con la cimentación (Hassanzadeh, 2012). Bellmer (2010) advierte de que gran parte de los problemas de durabilidad de los aerogeneradores se deben a un mal diseño de la cimentación. Currie et al (2013) presentan una solución para monitorizar las cimentaciones de estas torres. Eneland y Mallberg (2013) advierten de la gran dificultad que existe en diseñar un método de cálculo para las juntas de las piezas prefabricadas de este tipo de cimentaciones. Asimismo, una de las claves es la justificación de la viabilidad económica de los elementos frente a las cimentaciones ejecutadas “in situ”.

Referencias:

  • BURTON, T.; SHARPE, S.; JENKINS, N.; BOSSANYI, E. (2001). Wind Energy Handbook. Wiley, Chichester, UK, pp. 211–219.
  • BELLMER, H. (2010). Probleme im Bereich Stahlturm – Fundament, 3rd Technical Conference – Towers and Foundations for Wind Energy Converters, HAUS DER TECHNIK, Essen, Germany.
  • CURRIE, M.; SAAFI, M.; TACHTATZIS, C.; QUALI, F. (2013). Structural health monitoring for wind turbine foundations. Proceedings of the Institution of Civil Engineers, Paper 1200008.
  • DK200100030 (2001). Stjernefundament med elementer til foundering af tårne. Patent
  • ENELAND, E.; MALLBERG, L. (2013). Prefabricated foundation for wind power plants. A conceptual design study. Thesis in the Master’s Programme Structural Engineering and Building Technology, Chalmers University of Technology, Sweden.
  • GÁLVEZ, R. (2005). Diseño y cálculo preliminar de la torre de un aerogenerador. Proyecto Fin de Carrera, Universidad Carlos III de Madrid, Departamento de Mecánica de Medios Continuos y Teoría de Estructuras.
  • HASSANZADEH, M. (2012). Cracks in onshore wind power foundations. Causes and consequences. Stockholm: Elforsk (Elforsk Rapport, 11.56).
  • HERRANDO, V. (2012). Optimización del diseño de la cimentación para un aerogenerador de gran altura. Trabajo Fin de Carrera, Universitat Politècnica de Calalunya.
  • HORGAN, C. (2013). Using energy payback time to optimise onshore and offshore wind turbine foundations. Renewable Energy, 53:287-298.
  • HUANG, J.; McELROY, M.B. (2015). A 32-year perspective on the origin of wind energy in a warming climate. Renewable Energy, 77:482-492.
  • LOFTY, I. (2012). Prestressed concrete wind turbine supporting system. Master’s Dissertation, University of Nebraska, USA.
  • NILSON, M. (2012). Prefabricated foundations with cell reinforcement for land-based wind turbines. . Stockholm: Elforsk (Elforsk Rapport, 13:06).
  • REBELO, C.; MOURA, A.; GERVÁSIO, H.; VELJKOVIC, M.; SIMOES DA SILVA, L. (2014). Comparative life cycle assessment of tubular wind towers and foundations – Part 1: Structural design. Engineering Structures, 74:283-291.
  • SVENSSON, H. (2010). Design of foundations for wind turbines. Master’s Dissertation, Department of Construction Sciences, Lund University, Sweden.
  • The World wind energy association 2013 report. April 2014. Bonn, Germany. http://refhub.elsevier.com/S0960-1481(14)00872-6/sref1
  • WO2004101898A2 (2004). Foundation for a wind energy plant. Patent

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

13 octubre, 2017
 
|   Etiquetas: ,  ,  ,  ,  |  

Pilote perforado con barrena continua

El Pilote CPI-8 es un  pilote perforado con barrena continua tipo hélice hasta la profundidad solicitada (“Continuous Flight Auger“, CFA). Se trata de un pilote muy usado en España, siempre que tratemos con terrenos flojos, como arenas o arcillas. Se hormigona a través del núcleo de la barrena, mientras ésta se va extrayendo, para posteriormente colocar la armadura en hormigón fresco con el apoyo de un vibrador hidráulico (lo cual implica una consistencia blanda del hormigón). La punta de la barrena queda introducida varios diámetros dentro del hormigón durante su puesta en obra. Este procedimiento resulta muy interesante respecto a otras tipologías en cuanto al tiempo de ejecución. Los diámetros habituales son de 350 a 1200 mm.

Se recomienda una dosificación mínima de cemento de 380 Kg/m3 y un cono de 18 a 20 cm, con un árido máximo de 12 mm si es de cantera y 20 mm si es de gravera. Es muy importante garantizar una correcta bombealibidad del hormigón para introducirlo a través de la barrena.

El pilote CPI-8 presenta numerosas ventajas que hacen que sea una tipología muy empleada en cimentaciones profundas. Entre otras se pueden destacar las siguientes:

• No es necesario el uso de una entubación o de lodos tixotrópicos en terrenos inestables, pues la propia barrena permite la contención del terreno.
• Se puede controlar en todo momento la presión y volumen de hormigonado.
• Permiten realizar el empotramiento del pilote en estratos consistentes.
• Elevado rendimiento, lo que permite plazos de obra muy razonables.

En cuanto a las fases de ejecución, son las propias del pilotaje con barrena continua:

• Posicionamiento y aplome de la máquina para garantizar la verticalidad en la perforación.
• Perforación hasta la profundidad especificada.
• Bombeo del hormigón por el interior de la barrena y extracción simultánea de la barrena helicoidal, que lleva alojada en sus álabes el terreno perforado. El hormigón se encuentra en todo momento en contacto con la barrena helicoidal. Debe combinarse la velocidad de ascensión de la barrena, el caudal y la presión del hormigón para evitar cortes en el fuste del pilote o sobresecciones y excesos de hormigón innecesarios.
• Colocación de la armadura en el hormigón.

A continuación tenéis un Polimedia donde se explica la construcción de este tipo de pilotes.

Os dejo una colección de vídeos, algunos seleccionados por Juan José Rosas  en su blog que espero que os gusten.

Referencias:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. ISBN: 978-84-9048-457-9.

7 octubre, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  |  

Examen febrero 2016 Procedimientos de Construcción II

Descargar (PDF, 42KB)

19 febrero, 2016
 
|   Etiquetas: ,  ,  ,  ,  |  

Sistema “Omega” de ejecución de pilotes de desplazamiento por rotación

El sistema Omega de ejecución de pilotes permite mediante la aplicación rotación y empuje a la cabeza en la fase de perforación, y rotación y tiro en la fase de extracción, la instalación de pilotes con total ausencia de vibraciones y produciendo un desplazamiento lateral del terreno que lo compacta y evita la extracción de detritus.

Por encima del diámetro máximo de la cabeza, unas hélices horizontales y la inclinación adecuada del ángulo superior producen un segundo desplazamiento del terreno durante la secuencia de extracción y la fase de hormigonado. En esta fase, la presión controlada de inyección de hormigón a través de la varilla del tubo central induce un tercer estado de desplazamiento, asegurando una perfecta adherencia del pilote con el terreno.

Se utiliza una perforadora de vuelo parcial con una sección de desplazamiento que comprime y mejora la densidad de los flancos del agujero. Esto mejora la fricción en el perímetro y la capacidad  de carga del pilote vaciado en el molde.

Un documento explicativo lo podéis encontrar aquí: http://www.ifc-es.com/docs/doc478f25b17f2af6.04560118.pdf de la empresa IFC Cimentaciones Especiales S.A. Otro muy interesante, de Juan José Rosas: http://www.consultorsestructures.org/images/stories/quaderns/quaderns15.pdf?phpMyAdmin=1f73cb5e5b5871b17a5dd37e0ee619a6

Os dejo unos vídeos donde podéis observar cómo se realiza este tipo de pilote. Espero que os gusten.

Losa de cimentación postesada

http://ingenieriareal.com/

La rigidez de este tipo de losas permite el proceso de construcción sea rápido y seguro y su uso es recomendado en superficies planas sin suelo expansivo. La ventaja de este tipo de procedimientos es la rapidez en la ejecución de los cimientos, menor volumen de excavación, mayor capacidad de carga, y tiene una durabilidad mucho mayor que la losa solida convencional.

Os paso algunos vídeos donde se muestra el proceso de postesado de una losa de cimentación. Los cables postensados puestos en ambas direcciones de la losa pre comprimida hacen la cimentación extremadamente rigida y la habilitan para resistir las fuerzas de flexión. Espero que os gusten.

(más…)

20 febrero, 2014
 
|   Etiquetas: ,  ,  |  

¿Qué es un pozo de cimentación?


En esta imagen se ven dos anillos para caissons, superficialmente excavados.  Autor foto: Germán Baquero.

El pozo de cimentación (en francés caisson) es un tipo de cimentación semiprofunda, utilizada en suelos blandos, donde no son adecuados las cimentaciones superficiales. Los caissons tiene gran similitud con los pilotes,  la diferencia está en que los caissons son de mayor diámetro y casi siempre van construidos in situ. La particularidad del pozo de cimentación es la de que se va construyendo a medida que se va hundiendo en el terreno.

Este tipo de cimentación se requiere muchas veces soportar cargas horizontales o inclinadas adicionales a la carga vertical, en corrientes de agua de gran velocidad y profundas, como ocurre en las pilas para puentes sobre ríos que tienen que soportar una carga lateral por fuerza de viento en la superestructura, de la tracción de los vehículos que usan el puente, de las corrientes en el río y algunas veces de escombros flotantes o hielo.

Os paso este link sobre cómo se podría calcular un pozo de cimentación, del blog Estructurando: http://estructurando.net/2013/04/03/calculo-de-pozos-de-cimentacion-1a-parte/ y http://estructurando.net/2013/04/22/calculo-de-pozos-de-cimentacion-2a-parte/

Para aclarar su proceso constructivo os paso un vídeo de la Universidad de Los Andes. Se trata de la cimentación de un edificio de 14 pisos para un edificio institucional de dicha universidad. (más…)

20 diciembre, 2013
 
|   Etiquetas: ,  ,  ,  |  

Simulación construcción cimentaciones de puente

A continuación os paso una simulación en 3D del proceso constructivo propuesto para la ejecución de las cimentaciones del viaducto de río Ulla (Eje Atlántico de Alta Velocidad). Espero que os guste. Dura menos de 5 minutos.

 

 

30 octubre, 2013
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  |  

Universidad Politécnica de Valencia