UPV



Resultados de la búsqueda By Etiquetas: geotecnia


La redacción de un estudio geotécnico

http://www.ecoproyectosweb.com

El conocimiento de las características del terreno es un requisito previo ante cualquier proyecto u obra de ingeniería civil o edificación. Para ello es necesario acometer la redacción de un estudio geotécnico, cuyos objetivos serán definir la tipología y las dimensiones de los cimientos y obras de contención, así como determinar los problemas constructivos relacionados con  los materiales o con el agua presente. La extensión y el nivel de información necesario en un reconocimiento geotécnico dependen directamente del proyecto u obra a realizar, y de las características del terreno donde se sitúa. En el estudio geotécnico se plasman los resultados de la campaña realizada, su interpretación y las conclusiones que se derivan de su análisis, generalmente en forma de recomendaciones para el proyecto y construcción de la obra.

Para entender mejor cómo se realiza este estudio, os dejo un objeto de aprendizaje, cuyo autor es el profesor José Ramón Ruíz Checa, de la Universitat Politècnica de València. El vídeo se refiere a los conceptos básicos de estudio geotécnico, en particular sobre la programación en la redacción y contenido de dicho estudio. Espero que os sea de interés.

 

10 octubre, 2017
 
|   Etiquetas: ,  ,  |  

¿Qué técnicas de reconocimiento puedo utilizar en un estudio geotécnico?

http://greenhousescondo.com.ar

Según el Documento Básico SE-C Cimientos, del Código Técnico de Edificación, el estudio geotécnico es el compendio de información cuantificada en cuanto a las características del terreno en relación con el tipo de edificio previsto y el entorno donde se ubica, que es necesaria para proceder al análisis y dimensionado de los cimientos de éste u otras obras. Existen múltiples técnicas de reconocimiento empleadas en la redacción de un estudio geotécnico del terreno. Las técnicas pasan desde una inspección visual básica, por ejemplo para caracterizar un macizo rocoso), a técnicas de campo o laboratorio.

Podéis consultar el siguiente documento realizado por Juan Herrera y Jorge Castilla, de la UPM: “Utilización de técnicas de sondeos en estudios geotécnicos“:  http://oa.upm.es/10517/1/20120316_Utilizacion-tecnicas-sondeos-geotecnicos.pdf

También os dejo el siguiente vídeo realizado por el profesor José Ramón Ruiz, de la UPV, donde se explican brevemente los conceptos básicos del estudio geotécnico, así como las técnicas de reconocimiento más empleadas. Espero que os sea útil.

 

9 octubre, 2017
 
|   Etiquetas: ,  ,  ,  |  

Recomendaciones de trabajo en la compactación

Rodillo compactador vibratorio de un solo tambor LSS2502. http://sinomach-hi.es/

¿Qué recomendaciones podemos dar para ejecutar correctamente la compactación de un suelo? En posts anteriores ya hemos descrito la curva de compactación, la elección de un equipo de compactación y el tramo de prueba. Ahora vamos a centrarnos en algunos consejos, espero que útiles, que permitan mejorar la productividad y la calidad de esta unidad de obra que suele presentar tantas patologías y quebraderos de cabeza. Para ello nos ayudaremos de un Polimedia que espero que os guste. Al final del post os he escrito algunas recomendaciones y algunas referencias por si os resultan útiles.

NORMAS Y RECOMENDACIONES DE TRABAJO.

  • Una vez se ha extendido el material en tongadas con espesor adecuado y con el grado de humedad determinado[1], se procede de forma ordenada a compactar, controlando el número de pases y su distribución homogénea.
  • Se pueden comentar algunas recomendaciones de “buena práctica constructiva” en relación a la compactación.
  • Antes de iniciar la construcción de un terraplén o un pedraplén, se eliminará la tierra vegetal y se excavará, si procede, el terreno para asegurar la estabilidad del macizo.
  • Cuando se espera lluvia, es importante compactar lo más pronto posible los rellenos de granos finos todavía no compactados, puesto que un material esponjado tiene gran capacidad de retención de agua.
  • Para reanudar el trabajo lo antes posible, después de una lluvia, es buena práctica la eliminación con motoniveladora de la fina capa superficial de barrillo (2-3 cm) bajo la que el resto del material aparece poco afectado.
  • Con exceso de agua procedente de precipitaciones atmosféricas, puede realizarse la desecación natural mediante oreo. Ahora bien, con terrenos finos limo-arcillosos y humedades próximas al índice plástico, se estabilizan mediante la adición de cal, cenizas volantes, escorias o arenas.

Compactador Hamm 3411

  • El riego de las tongadas extendidas, siempre que sea necesario, se efectuará de forma que el humedecimiento de los materiales sea uniforme, y el contenido óptimo de humedad se obtendrá a la vista de los resultados verificados por el laboratorio de cada caso con el equipo de compactación previsto.
  • Si se comienza la compactación por los bordes del terraplén, conseguiremos cierto efecto de “confinamiento” que ayuda a la densificación.
  • Deben solaparse los pases de compactación, para uniformizarlos, debido a que en el centro de la máquina se consigue mayor eficacia.
  • Se deben ejecutar de forma suave los cambios de dirección en la marcha y los virajes, para no arrastrar el material.
  • Es bueno dar cierto sobreancho a los terraplenes, ya que los bordes quedan siempre compactados por debajo de lo debido.
  • Los bordes de los terraplenes a veces se precisa compactarlos, con lo cual necesitamos de un tractor o grúa que remolque por dicho terraplén al compactador.
  • La superficie de las distintas tongadas deberá tener la pendiente transversal necesaria para evacuar las aguas sin peligro de erosión. Esta pendiente normalmente varía entre el 2 y el 4%.
  • Si se usa un sólo equipo, se simplifican los controles, pero a veces se utilizan dos tipos, uno de mayor rendimiento, y otro que sella la terminación de cada tongada.
  • Si se utilizan equipos vibrantes, las últimas pasadas se realizarán sin aplicar la vibración, con objeto de cerrar las posibles irregularidades de la superficie.
  • Es importante la buena nivelación de la superficie a compactar, de otro modo, las zonas deprimidas que no son pisadas por el rodillo quedarán deficientes de compactación.
  • Se suspenderán los trabajos de compactación cuando la temperatura ambiente sea inferior a 2ºC. Los terrenos congelados no pueden compactarse.
  • Sobre las capas en ejecución se prohíbe el tráfico hasta que se complete su compactación. Si ello es imposible, se distribuirá sin concentrar las huellas en la superficie.
  • Si el terraplén tuviera que construirse sobre un firme existente, se escarificará y compactará éste para procurar su unión con la tongada inmediata superior. Los productos removidos no aprovechables se llevarán a vertedero.
  • Si el periodo de tiempo transcurrido entre el extendido y la compactación es largo, puede producirse la evaporación suficiente para dar como resultado un contenido inadecuado de humedad. El material debe ser compactado inmediatamente para evitar el mayor costo de humectación.
  • Al finalizar la jornada no deben dejarse montones de material sin extender ni capas sin compactar, pues si las condiciones atmosféricas son buenas ocurre lo indicado en el párrafo anterior, pero si llueve sobre el material esponjado, a pocos finos que posea, su capacidad de retención de agua será grande y quedará la obra impracticable, con el agravante de tener que sacar y tirar dicho material, pues el periodo de tiempo que sería necesario para su oreo nunca lo permitiría la marcha de la obra.
  • Los efectos nocivos de la lluvia sobre una tongada compactada con pata de cabra pueden reducirse si, antes de caer el agua sobre ella, se ha planchado con un rodillo liso estático o vibratorio.
  • El inconveniente de los rodillos lisos respecto a la unión entre capas[2] se remedia si se pasa una grada o un arado de discos para escarificar la superficie. Antes de este proceso la superficie lisa, y con algo de pendiente, protege contra la lluvia y permite la circulación de vehículos.

Referencias:

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (1999). Prácticas de equipos de excavación, transporte y compactación de tierras. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-4036. 129 pp. Depósito Legal: V-5208-1999.


[1]La corrección de humedad es costosa y delicada, sobre todo en terrenos cohesivos. Es más fácil adicionar agua. El reducir humedad puede conseguirse mediante escarificado y volteo de las capas, dejándolas secar. A veces se recurre a métodos especiales como el sistema “sandwich”, que consiste en intercalar entre capas húmedas una capa granular para ir drenando el agua, o bien tratamientos con cal, que absorbe el resto de agua al hidratarse.

[2]Podría crearse una discontinuidad, con peligro de filtraciones. El arado de discos no debe faltar en la construcción de una presa de materiales sueltos de tipo cohesivo, ya que consigue cierto mezclado y amasado entre capas.

15 septiembre, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  |  

Sondeos helicoidales

 El sondeo a rotación con barrena helicoidal, maciza o hueca es un método a perforación a destroza en la que los materiales salen desmenuzados por la boca del sondeo. Se puede utilizar si el terreno es relativamente blando y cohesivo, y no se encuentran capas cementadas, gravas, o roca en toda la profundidad de realización del sondeo. Si se emplea la barra helicoidal hueca, es posible la toma de muestras inalteradas y la realización de ensayos “in situ” por el interior de la sonda.

Podemos destacar tres tipos fundamentales: hélice corta, hélice continua y cucharas auger. (más…)

12 septiembre, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  |  

Los movimientos de ladera

Daños causados por deslizamientos de lodo en el centro de Puerto Rico después del huracán Georges. Wikipedia.

Un movimiento de ladera es un desplazamiento de una masa de rocas o tierras hacia el exterior de la misma y con un componente descendente inducido por la acción de la gravedad. Se trata de una importante amenaza para la población y sus bienes, muchas veces infravalorada. Así, en Estados Unidos se producen de 25 a 50 muertes al año, con pérdidas valoradas en unos 310 millones de dólares. Los terribles terremotos producidos en Nepal han puesto de manifiesto la tragedia que supone los corrimientos de tierras y las víctimas que conlleva. Este fenómeno debe tenerse en cuenta en la planificación territorial tanto urbanística como para la implantación de infraestructuras.

Existen muchas clasificaciones de los movimientos de ladera. Sin embargo, podemos distinguir algunos de ellos:

  • Caída o desprendimiento: caída libre de bloques, cantos, gravas, etc. La caída de material se produce fragmento a fragmento.
  • Vuelco: rotación hacia el exterior de una masa de roca, derrubios o suelo sobre un pivote o bisagra en la ladera.
  • Deslizamiento: movimiento del material a lo largo de una superficie de cizalla (corte) reconocible. Se clasifican a su vez en rotacionales o traslacionales.
  • Flujo: movimiento en el que las partículas individuales de material viajan separadas dentro de la masa que se mueve. Según los materiales pueden ser debris-flow, mud-flow y sand-flow.

Para disminuir las probabilidades de que este riesgo se materialice, es necesario llevar a cabo una serie de medidas preventivas basadas principalmente en la utilización de estructuras de ingeniería como protección. Existen dos clases:

  • Protección estructural activa: Dentro de la protección activa se encuentran las redes, los muros de contención, las mallas metálicas, los anclajes y cualquier protección que ejerza una acción sobre el elemento inestable para fijarlo.
  • Protección estructural pasiva: Engloba a las barreras dinámicas y a cualquier estructura que no evite que se desencadene el suceso pero si lo retenga antes de que llegue a cualquier población amenazada.

En el siguiente vídeo de la universidad de La Laguna, el profesor Abel López nos explica las amenazas geológicas y geomorfológicas que supone un movimiento de ladera.

En estos otros vídeos podemos ver algunos deslizamientos de ladera, algunos realmente espectaculares.

En este otro vídeo, vemos cómo el Gobierno de El Salvador comunica los riesgos a las personas este tipo de riesgo.

 

 

 

 

 

16 mayo, 2015
 
|   Etiquetas: ,  ,  ,  |  

Los tramos de prueba en la compactación de suelos

La compactación de suelos suele ser uno de los procedimientos constructivos donde las patologías suelen aparecer debido a su mala ejecución. Debido a la multitud de factores que influyen en la compactación, para grandes volúmenes de obra, se aconseja la realización de tramos de prueba, donde se pueden establecer los criterios que, bajo la perspectiva económica, sean óptimos para llegar a la compactación especificada. Los tramos de prueba no suelen estar justificados en el caso de que los materiales sean suficientemente homogéneos y siempre resulta interesante cuando nos encontramos ante yacimientos importantes. En otro caso, no resulta económica su ejecución. Estos tramos de prueba están formados por una cuña, cuyo espesor llega hasta el máximo que se considere para el equipo empleado. A continuación os dejamos un Polimedia donde se recoge una somera explicación a la realización de estos tramos de prueba.

Referencias:

YEPES, V. (2011). Tramo de prueba de compactación. http://hdl.handle.net/10251/13370

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

28 abril, 2015
 
|   Etiquetas: ,  ,  ,  ,  |  

Peso específico de un suelo

SueloSe entiende por suelo al seudosólido formado por un conjunto de partículas sólidas que forman una estructura en cuyo seno existen huecos ocupados por agua y aire en proporciones variables. El “peso específico de un suelo“, como relación entre el peso y su volumen, es un valor dependiente de la humedad, de los huecos de aire y del peso específico de las partículas sólidas. Para evitar confusiones, las determinaciones de los ensayos de laboratorio facilitan por un lado el “peso específico seco” y por otro la humedad. Fijémonos que este término es diferente de la “densidad del suelo“, que establece una relación entre la masa y el volumen. También suele utilizarse un valor adimensional denominado, “peso especifico relativo”, definido como el cociente entre el peso específico del suelo y el peso específico del agua a una temperatura determinada. Los valores típicos de gravedades específicas para los sólidos del suelo son entre 2.65 y 2.72. En la figura que sigue se observan los componentes de un suelo, con las notaciones sobre sus pesos y volúmenes, lo cual permite definir parámetros que caracterizan el estado físico de dicho suelo.

Estos conceptos son básicos y muy conocidos para el alumno de un curso de geotecnia en un grado de ingeniería civil. Sin embargo, para facilitar el proceso de aprendizaje os facilito a continuación un enlace a un pequeño laboratorio virtual donde el alumno puede comprobar por sí mismo cómo varía el peso específico seco en función de la humedad y del peso específico de las partículas sólidas. Las instrucciones son muy sencillas: se debe seleccionar el rango máximo para la humedad y el contenido de huecos de aire, en tanto por cien, con valores comprendidos entre 0 y 100; además se seleccionará el peso específico de las partículas sólidas en kN/m3. No se admiten valores negativos.

El enlace a dicho laboratorio virtual es: https://laboratoriosvirtuales.upv.es/eslabon/DensidadSuelo/ 

Densidad

 

Referencias:

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

 

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

13 abril, 2015
 
|   Etiquetas: ,  ,  ,  ,  |  

¿Cómo seleccionar un equipo de compactación?

¿Por qué es habitual compactar con el primer compactador que tenemos en obra? Grandes errores y pérdidas económicas han sufrido más de una obra de movimiento de tierras por no acertar con el equipo de compactación adecuado. No es un tema fácil, pues requiere conocer con cierto detalle no sólo las características del compactador, sino también el tipo de suelo, sus características de humedad, granulometría, etc., y además, las condiciones de trabajo que vamos a imponer a esta unidad de obra. Vamos, pues, a intentar divulgar algunas ideas en torno a este tema para complementar otros posts anteriores como el que dedicamos a la curva de compactación o al tramo de prueba. (más…)

10 diciembre, 2014
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  ,  |  

Ensayo de placa de carga

Ensayo de placa de carga. Vía: Enrique Montalar

El ensayo de placa de carga es uno de los ensayos “in situ” llevados a cabo para realizar un reconocimiento geotécnico. La ejecución de la prueba resulta imprescindible para la comprobación de la capacidad portante de un suelo, en función de su estado natural o como consecuencia de una determinada compactación.

Consiste en aplicar una carga sobre una placa (generalmente rígida), colocada sobre la superficie del terreno, y medir los asientos producidos. Se utilizan con gran profusión para comprobar el módulo de deformación de capas de terraplenes y de firmes.

El método habitualmente utilizado es el estático, con carga aplicada sobre una placa circular mediante un gato hidráulico, utilizando un camión cargado o una máquina pesada como reacción para el gato. La norma NLT-357/98 describe la realización de este ensayo. El Pliego de Prescripciones Técnicas Generales para Obras de Carreteras, especifica valores mínimos de l módulo E2 para diferentes materiales y situaciones (link).

Os dejo varios vídeos sobre cómo se realiza el ensayo. Espero que os gusten:

(más…)

1 diciembre, 2014
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  |  

Inyecciones de fracturación

Las inyecciones de fracturación (también llamadas hidrofisuración, hidro-fracturación, hidrojacking o claquage), son inyecciones de lechada de cemento a media/alta presión que rompen el terreno, produciendo la densificación y rigidización del terreno, creando una red estructuradora del terreno.  Se introduce un material de baja viscosidad que busca la rotura del terreno para la posterior introducción de la lechada de pronto fraguado para reestructurarle. El tipo de lechada o mortero a emplear, así como los aditivos y dosificaciones dependerán tanto del tipo de inyección que vayamos a realizar como del resultado que estemos buscando con la intervención.

La técnica se realiza mediante la inyección con un tubo-manguito, inyectándose pequeños volúmenes en cada fase. El producto de inyección no es capaz de penetrar en los poros del terreno, sino que se introduce por las fisuras que se van creando por efecto de la presión. Se crean lentejones del material inyectado, que recomprimen transversalmente el terreno. Al crear una nueva estructura de terreno reforzado se consigue un doble efecto de densificación y rigidización. Esto se debe a que el suelo queda cosido por la red de fracturas cementadas inducidas en el mismo. (más…)
21 octubre, 2014
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  |  

Previous Posts

Universidad Politécnica de Valencia