UPV



Resultados de la búsqueda By Etiquetas: hormigon-prefabricado


Moldes para hormigón prefabricado

Moldes para hormigón prefabricado. Cortesía: ANDECE

Moldes para hormigón prefabricado. Cortesía: ANDECE

El molde es el elemento que contiene al hormigón fresco, respondiendo su diseño a las exigencias de las piezas que se van a prefabricar. Se exige que los moldes presenten la máxima calidad posible para garantizar la precisión dimensional, la estabilidad, la versatilidad para adaptarse a otras formas, que sean fáciles de usar y durables. Por tanto, los moldes deben mantener su integridad durante el vertido del hormigón y en la aplicación del pretensado, si lo hubiese.

Los moldes deben reutilizarse el máximo número de veces posible, sin que ello suponga una merma en la calidad, por la repercusión económica que presenta en el producto final. La reutilización se puede realizar con piezas diferentes, aunque es deseable que se mantenga la tipología, cambiando en este caso sólo la longitud o la altura con pequeñas modificaciones. Suelen disponerse en horizontal y de forma continua, aunque también es posible disponerlos en algunos casos en vertical (en batería).

Los moldes suelen ser de acero, pues permite alargar el número de usos y adaptarse a la geometría necesaria. Estos moldes son fáciles de transportar y reubicar dentro de la planta. De hecho, los moldes suelen llenar las plantas de fabricación y a veces es un verdadero problema ubicarlos para facilitar las maniobras y el resto de actividades sin que molesten. El problema que pueden presentar es la corrosión del acero, que puede atenuarse con aditivos inhibidores de la corrosión y con un buen agente desencofrante.

Con todo, también existen moldes de otros materiales como el polietileno expandido, que son desechables. Este material es ligero, barato y permite ahorros de tiempo, aunque su uso está muy centrado en piezas ornamentales. También es cierto que este tipo de materiales, junto con otros como el poliéster o la fibra de vidrio, permite reducir la disipación del calor interno durante el fraguado, lo que permite acelerar el proceso de curado.

Por tanto, una forma de acelerar el curado es usar moldes de acero calefactados. En ellos se permite un aporte de energía que garantice una temperatura fija o una curva de temperatura de curado adecuada a la reacción química interna del hormigón. Los moldes de acero también pueden ser “autorresistentes” en el caso de piezas pretensadas, donde el propio molde puede contener los elementos de anclaje de las armaduras activas, sirviendo de bancada de pretensado.

También los moldes pueden disponer de un sistema de vibradores laterales o internos, de forma que se permita eliminar las burbujas de aire y mejorara la distribución de los áridos. Sin embargo, estos vibradores no se utilizan en el caso de emplear hormigón autocompactante. Además, como puede verse en la figura inferior, los moldes suelen presentar unas plataformas y accesos laterales para facilitar el acceso seguro de los operarios.

Molde prefabricado 2

Apertura de caras laterales antes de retirar la viga prefabricada. Escaleras de acceso a la plataforma lateral para el control del proceso. Cortesía: ANDECE.

Con el uso repetido de los moldes, éstos se deforman, pierden sección y cogen holguras en sus fijaciones. Todo ello perjudica la calidad de las piezas, por lo que resulta de gran importancia disponer de un buen plan de control y mantenimiento de estos moldes. De todas las operaciones, hay que cuidar la limpieza tras el uso. En el caso de elementos de gran longitud, hay que cuidar la alineación del conjunto del molde y su inmovilización para mantener la pieza dentro de las tolerancias exigidas.

En el siguiente vídeo, de Vifesa Fabricados Industriales, podemos ver moldes modulares para el prefabricado de marcos de hormigón de distintos tamaños.

15 marzo, 2018
 
|   Etiquetas: ,  ,  |  

Mezcladora forzada de tren planetario

Es una mezcladora de hormigón que también recibe el nombre de “mezcladora de tren bailarín“. Es una hormigonera típica de las industrias de prefabricados y para mezclas muy secas. Consta de una cuba fija, de mayor diámetro que altura, con su eje vertical. En el interior gira suspendido un reductor con un eje de salida de tipo planetario, al que está acoplado un conjunto de paletas. Su capacidad oscila entre 1 y 4 metros cúbicos. Una duración típica de un ciclo de amasado, llenado y vaciado es de 90 segundos, pudiendo ser reducido cuando se trata de alimentar camiones-hormigonera y ligeramente aumentado para mezclas especiales.

La velocidad de las paletas debe ser tal que la fuerza centrífuga resultante no produzca la separación de los elementos constituyentes del hormigón. La paletas tienen un doble movimiento de rotación, de forma que la partícula ligada a las paletas describe un movimiento epicicloidal:

  • Alrededor de su eje.
  • Alrededor del eje de la máquina.

 

El motor es vertical, montado sobre un cárter cilíndrico colocado por encima de la cuba. La carga se realiza por la parte superior y la descarga por una compuerta abatible en el fondo, bien en uno de sus laterales, o bien en el centro del mismo.

Os paso algunos vídeos donde podéis ver el funcionamiento.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València. 189 pp.

 

21 febrero, 2018
 
|   Etiquetas: ,  ,  ,  |  

Mezcladora planetaria a contracorriente

Si lo que se pretende es conseguir un hormigón de gran calidad, por ejemplo en una planta de prefabricados, lo adecuado es disponer de una mezcladora planetaria de eje vertical a contracorriente. Se trata de unas mezcladoras forzadas de eje vertical donde la cuba no es fija, sino que posee un movimiento de rotación contrario al del sistema planetario. Las paletas tienen un doble movimiento de rotación, alrededor de su propio eje y alrededor del eje de la máquina. El bastidor es una estructura robusta de acero soldado. Las placas en el fondo, las palas de mezclado y el rascador son piezas intercambiables debido a su desgaste. Las paletas rascan la parte inferior de la cuba impidiendo la formación de costras presentes en otros tipos de máquina.  Existen dos compuertas de servicio en la cubierta de la mezcladora y una puerta de servicio en el lateral para facilitar la limpieza y el mantenimiento. Estas mezcladoras suministran un hormigón muy homogéneo, pero al tener más mecanismos y mayor peso que otras, es también más cara.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València. 189 pp.

 

 

 

15 enero, 2018
 
|   Etiquetas: ,  ,  ,  ,  |  

Bancadas de tesado en las plantas de prefabricados

Bancada de tesado 1

Vista del extremo de bancada de tesado. Cortesía: ANDECE.

Los elementos de hormigón pretensado son productos habituales de las plantas de prefabricados. Para poder realizar el tesado de las armaduras activas, se utilizan bancadas de tesado. Estos elementos permiten anclar los cables en los extremos de la pista, donde se encuentra una solera de hormigón que servirá de base al molde. Estas bancadas suelen ser largas, de 100 a 150 m, pues a mayor distancia entre los elementos de anclaje, mayor economía, siempre y cuando no se contrarreste el momento flector a que se le somete.

Las bancadas son estructuras metálicas realizadas con chapas de resistencia suficiente para soportar la tracción de las armaduras. Además, presentan unas cimentaciones muy grandes capaces de estabilizar las fuerzas de pretensado que se apliquen. En otras ocasiones, el propio molde presenta los elementos de anclaje en sus extremos, sirviendo la bancada como fondo de molde. En este caso el molde es autorresistente y se puede mover a otro lugar de la planta.

Extremo de la bancada de tesado. Cortesía: ANDECE.

Extremo de la bancada de tesado. Cortesía: ANDECE.

Se pueden fabricar distintos tipos de piezas en una misma bancada, siempre que no se sobrepase el límite de la fuerza de pretensado capaz de soportar la bancada. La cantidad de cables colocados definirá la magnitud de la fuerza de pretensado aplicada.

Para comprobar que la relación fuerza de pretensado/altura de actuación de los cables se mantiene dentro de los márgenes de seguridad exigibles, las bancadas disponen de una placa visible con un gráfico donde se establecer los valores máximos. A mayor altura de la resultante de la acción de los cables, menor será la fuerza total admisible.

Extendedora del cable de pretensado en la bancada. Fuente: www.resimart.com

Extendedora del cable de pretensado en la bancada. Fuente: www.resimart.com

Los moldes se comercializan y las bancadas se dimensionan para una fuerza máxima nominal determinada. Esto se corresponde con la fuerza y excentricidad de cables correspondientes al canto máximo que se pueda fabricar. Si la excentricidad es menor, se podría aplicar una fuerza de pretensado superior a la nominal.

A continuación os dejo algunos vídeos donde podemos ver cómo son algunas instalaciones de prefabricados. En este primer vídeo podemos ver cómo se fabrican viguetas pretensadas Tensyland (Prensoland).

Aquí vemos el mismo proceso de fabricación de viguetas, en este caso de la empresa VELOSA.

En este otro vídeo también vemos el proceso de fabricación de viguetas de hormigón pretensado.

21 noviembre, 2017
 
|   Etiquetas: ,  ,  ,  ,  |  

Cimentaciones prefabricadas en aerogeneradores

Aerogeneradores Bazan Bonus Mk. IV situados en el Parque éolico de Vicedo, a caballo entre el límite de los municipios de Viveiro y Vicedo (provincia de Lugo, España). Fotografía: Enrique Pernas Rouco. Wikipedia.

La demanda de energía renovable a nivel mundial se incrementa con la conciencia medioambiental. La energía eólica es una energía renovable que se está implantando fuertemente a nivel mundial. Se estima que la energía contenida en los vientos es aproximadamente el 2% del total de la energía solar que alcanza la tierra, lo que supone casi dos billones de toneladas equivalentes de petróleo al año (200 veces mayor de la que consumen todos los países del planeta), aunque en la práctica solamente podría ser utilizada una parte muy pequeña de esa cifra, por su aleatoriedad y dispersión, del orden del 5%. Según “The World Wind Energy Association”, la capacidad mundial eólica instalada alcanzó un nivel sin precedentes de más de 318 GW a finales de 2013, de los cuales aproximadamente 35 GW se añadieron en 2013, el nivel más alto registrado hasta la fecha. La energía eólica contribuye en cerca de un 4% en satisfacer la demanda de energía eléctrica mundial. Un total de 103 países están utilizando este tipo de energía desde el punto de vista comercial y se espera que la capacidad de generación de energía eólica pueda aumentar hasta 700 GW en el horizonte del año 2020. En España, la contribución de la eólica a la demanda eléctrica en el año 2010 representó el 16% del total y su objetivo es aumentar ese porcentaje en un futuro. Una sola turbina puede abastecer de electricidad a 500 hogares. Recientemente Huang y McElroy (2015) han realizado una revisión de las perspectivas de este tipo de energía en relación al cambio climático.

El aerogenerador se compone de tres partes: torre, rotor y álabes. En el generador eléctrico es donde se transforma el movimiento mecánico del rotor en energía eléctrica. Suele ser un generador asíncrono o de inducción, con una potencia máxima entre 500 y 1500 kW. Están diseñados generalmente para rendir al máximo a velocidades alrededor de 15 m/s. En el caso de vientos más fuertes es necesario gastar parte del exceso de la energía del viento para evitar daños en el aerogenerador. En consecuencia todos los aerogeneradores están diseñados con algún tipo de control de potencia. Los componentes de un aerogenerador están diseñados para durar 20 años. Esto significa que tendrán que resistir más de 120.000 horas de funcionamiento, a menudo bajo condiciones climáticas adversas (Gálvez, 2005). Respecto a las torres eólicas, se distinguen las “onshore”, instaladas en tierra, normalmente en grandes llanos o zonas elevadas y las “offshore”, cuya localización es dentro del mar, en zonas próximas a la costa.

aerogenerador

http://e-ducativa.catedu.es

Los aerogeneradores operan bajo regímenes de carga muy exigentes (Burton et al., 2001), cuyos efectos podrían disminuir la integridad estructural y llevar a costes de mantenimiento y reparación que podrían ser inaceptables. Rebelo et al (2014) abordan el estudio comparativo relativo la influencia del aumento de altura en el diseño estructural y los resultados de diferentes soluciones estructurales de un aerogenerador. Sus conclusiones son que el uso de secciones tubulares de acero y conexiones de brida son adecuadas para torres de hasta 80 m, mientras que las conexiones de fricción son mejores para torres más altas. En cuanto a las torres de hormigón, éstas dejan de ser competitivas por encima de 100 m de altura, especialmente por las dimensiones necesarias de la cimentación ante riesgo sísmico, que pueden incrementar el volumen de hormigón en cimientos hasta un 75%. Sin embargo, según refiere Lofty (2012), la prefabricación de la torre con hormigón es de gran interés a partir de los 75 m de altura. La fuerza vertical que actúa sobre la cimentación se debe fundamentalmente al peso propio de la torre, la góndola y las palas del rotor, incluso cierta fuera vertical provocada por el viento. Sin embargo, son preponderantes las fuerzas horizontales provocadas por el viento, generando un gran momento flector en la base debido a la gran altura de la torre. La torre suele ser prefabricada, en forma troncocónica, conectándose a la cimentación a través de una interfaz que suele ser un tubo de acero de grandes dimensiones insertado en el hormigón de la cimentación, aunque existen múltiples variantes en estos conectores.

http://www.inproin.com

Una de las partes fundamentales de un aerogenerador es la forma en que la torre se sujeta al terreno. La selección del tipo de cimiento dependerá fundamentalmente de la ubicación del aerogenerador y las condiciones del terreno. Según la European Wind Energy Association (2013), la cimentación supone aproximadamente el 6,5% del coste total para proyectos onshore y el 34% para proyectos offshore, lo que justifica una optimización de este tipo de estructuras (Horgan, 2013). Hoy en día, construimos la mayoría de las turbinas eólicas en tierra en suelos firmes y rígidos, pero probablemente las futuras torres eólicas se construirán sobre suelos con propiedades menos favorables. El cálculo de la cimentación depende de las cargas producidas por el rotor eólico en diferentes condiciones de operación, por esto la tecnología del aerogenerador juega un papel fundamental. La forma más habitual de cimentar un aerogenerador es una zapata de hormigón (Hassanzadeh, 2012). Tal y como indica Svensson (2010), las cimentaciones sobre losas de hormigón podrían dejar de ser adecuadas, pues grandes dimensiones provocan asientos diferenciales inaceptables. La altura de las torres puede variar mucho, entre 40 y 130 m. Cuanta más alta sea la torre, mayor velocidad de viento, y por tanto, mayor generación de energía.

Las torres de aerogeneradores se localizan en áreas con buenas condiciones de viento pero que, en numerosas ocasiones, se encuentran en terrenos inhóspitos o con malas condiciones de acceso, lo cual dificulta la ejecución de las cimentaciones de estas estructuras. Para anclar estas torres normalmente se utilizan los métodos: cimentaciones o zapatas que sujetan la estructura al terreno mediante gravedad, o bien mediante anclajes realizados sobre terrenos competentes. Se busca garantizar la estabilidad de la estructura y asegurar una transmisión de cargas al terreno con la adecuada intensidad para que este no colapse. En numerosas ocasiones los terrenos no permiten dicho anclaje, por lo que es habitual el uso de zapatas masivas realizadas con hormigón armado. No obstante, las geometrías empleadas en planta son muy diversas. Se utilizan soluciones con planta poligonal, circular e incluso cruciforme, siendo esta ultima un caso muy aislado. Herrando (2012) ha comprobado cómo para un aerogenerador tipo de 100 m de altura y 3,5MW de potencia, la cimentación superficial con geometría en planta circular es la que mejores resultados ofrece a nivel estructural y económico.

Cimentación prefabricada para torre eólica de la empresa Artepref. Fuente: Diario de Burgos

Cimentación prefabricada para torre eólica de la empresa Artepref. Fuente: Diario de Burgos

Las ventajas de la prefabricación son evidentes, reduciéndose incluso la cantidad de material necesario respecto a cimentaciones ejecutadas “in situ”. La prefabricación reduce los problemas de hormigonado in situ de grandes volúmenes, que no sólo generan problemas importantes cuando los accesos se encuentran alejados de las plantas de fabricación de hormigón e incrementan considerablemente el calor de hidratación en el fraguado del hormigón, sino que las temperaturas extremas pueden reducir el número de días de trabajo efectivo. Además, teniendo en cuenta que la vida útil de un aerogenerador puede ser de 20 a 25 años, la prefabricación facilita la fase de desmantelamiento de las instalaciones. Se han generado en el mercado cimentaciones alternativas donde una parte o la totalidad de la cimentación se realizan con piezas prefabricadas. Así, algunas patentes europeas y americanas, como por ejemplo, DK200100030 (2001) y WO2004101898A2 (2004), han desarrollado soluciones de cimentación prefabricadas para el caso de pequeñas instalaciones, no quedando claro que alguna de estas soluciones se hayan construido realmente (Nilsson, 2012). Empresas como Gestamp Hybrid Towers ofrecen diseños de cimentaciones prefabricadas para torres en forma de T invertida que pretende ofrecer eficiencia y ductilidad a la solución. La empresa burgalesa ARTEPREF patentó también una cimentación prefabricada para este tipo de torres. Además, estas soluciones suelen unir las piezas prefabricadas mediante hormigón fresco. Por tanto, el elemento clave en el diseño de este tipo de cimentaciones son la forma con la que se resuelven las juntas para convertir las piezas en un conjunto monolítico y también la conexión o “brida” de la torre con la cimentación (Hassanzadeh, 2012). Bellmer (2010) advierte de que gran parte de los problemas de durabilidad de los aerogeneradores se deben a un mal diseño de la cimentación. Currie et al (2013) presentan una solución para monitorizar las cimentaciones de estas torres. Eneland y Mallberg (2013) advierten de la gran dificultad que existe en diseñar un método de cálculo para las juntas de las piezas prefabricadas de este tipo de cimentaciones. Asimismo, una de las claves es la justificación de la viabilidad económica de los elementos frente a las cimentaciones ejecutadas “in situ”.

Referencias:

  • BURTON, T.; SHARPE, S.; JENKINS, N.; BOSSANYI, E. (2001). Wind Energy Handbook. Wiley, Chichester, UK, pp. 211–219.
  • BELLMER, H. (2010). Probleme im Bereich Stahlturm – Fundament, 3rd Technical Conference – Towers and Foundations for Wind Energy Converters, HAUS DER TECHNIK, Essen, Germany.
  • CURRIE, M.; SAAFI, M.; TACHTATZIS, C.; QUALI, F. (2013). Structural health monitoring for wind turbine foundations. Proceedings of the Institution of Civil Engineers, Paper 1200008.
  • DK200100030 (2001). Stjernefundament med elementer til foundering af tårne. Patent
  • ENELAND, E.; MALLBERG, L. (2013). Prefabricated foundation for wind power plants. A conceptual design study. Thesis in the Master’s Programme Structural Engineering and Building Technology, Chalmers University of Technology, Sweden.
  • GÁLVEZ, R. (2005). Diseño y cálculo preliminar de la torre de un aerogenerador. Proyecto Fin de Carrera, Universidad Carlos III de Madrid, Departamento de Mecánica de Medios Continuos y Teoría de Estructuras.
  • HASSANZADEH, M. (2012). Cracks in onshore wind power foundations. Causes and consequences. Stockholm: Elforsk (Elforsk Rapport, 11.56).
  • HERRANDO, V. (2012). Optimización del diseño de la cimentación para un aerogenerador de gran altura. Trabajo Fin de Carrera, Universitat Politècnica de Calalunya.
  • HORGAN, C. (2013). Using energy payback time to optimise onshore and offshore wind turbine foundations. Renewable Energy, 53:287-298.
  • HUANG, J.; McELROY, M.B. (2015). A 32-year perspective on the origin of wind energy in a warming climate. Renewable Energy, 77:482-492.
  • LOFTY, I. (2012). Prestressed concrete wind turbine supporting system. Master’s Dissertation, University of Nebraska, USA.
  • NILSON, M. (2012). Prefabricated foundations with cell reinforcement for land-based wind turbines. . Stockholm: Elforsk (Elforsk Rapport, 13:06).
  • REBELO, C.; MOURA, A.; GERVÁSIO, H.; VELJKOVIC, M.; SIMOES DA SILVA, L. (2014). Comparative life cycle assessment of tubular wind towers and foundations – Part 1: Structural design. Engineering Structures, 74:283-291.
  • SVENSSON, H. (2010). Design of foundations for wind turbines. Master’s Dissertation, Department of Construction Sciences, Lund University, Sweden.
  • The World wind energy association 2013 report. April 2014. Bonn, Germany. http://refhub.elsevier.com/S0960-1481(14)00872-6/sref1
  • WO2004101898A2 (2004). Foundation for a wind energy plant. Patent

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

13 octubre, 2017
 
|   Etiquetas: ,  ,  ,  ,  |  

Construcción prefabricada de pilas de puente

ph_pilas5

Pilas prefabricadas. Fuente: Grupo Pacadar, www.pacadar.es

La prefabricación en la construcción de pilas de puente constituye una alternativa a la construcción mediante sistemas tradicionales de encofrado, los encofrados trepantes o los deslizantes. Las ventajas de la prefabricación se relacionan con la industrialización del proceso constructivo, mejoras de acabados, reducción de plazos, etc. Este tipo de construcción prefabricada ha evolucionado fuertemente, pudiéndose adecuar hoy día a la construcción de un buen número de tipologías de pilas al contar con sistemas auxiliares de transporte y montaje cada vez de mayor potencia, desde las correspondientes a pequeños pasos superiores a las de grandes puentes con pilas de incluso más de 40 m de altura. Los medios auxiliares de transporte y montaje permiten manejar pesos de 100 a 200 t, aunque es posible superar ampliamente estos valores.

Las tipologías habituales de pilas prefabricadas son las siguientes:

  • Fustes independientes con o sin capitel de apoyo
  • Pilas pórtico formadas por fustes verticales y cabecero superior de unión
  • Pilas construidas por dovelas horizontales
ph_dinteles1

Montaje de dinteles prefabricados. Fuente: Grupo Pacadar, www.pacadar.es

Quizá uno de los inconvenientes de la prefabricación, en este momento superados, es la unión entre elementos o entre elementos y partes “in situ”, especialmente en aquellas estructuras hiperestáticas. Las secciones de pilas pequeñas, de 60 x 60 cm2, suelen empotrarse en cálices dejados en las zapatas de cimentación, rellenándose el hueco libre con hormigón. Sin embargo, para mayores secciones, suele dejarse en la zapata vainas corrugadas de 100 mm de diámetro, con longitud suficiente para el anclaje de las armaduras del fuste. Posteriormente se rellenan estas vainas con un mortero sin retracción.

El montaje de estos elementos prefabricados se empieza con unos apoyos blandos de madera que sirven para calzar las piezas y evitar las concentraciones de tensiones en la superficie de la junta. Estas juntas posteriormente se rellenan y ajustan con un mortero líquido sin retracción que garantice la transmisión de tensiones.

En pilas altas, las pilas son de sección hueca para optimizar el uso del material, reducir el peso y facilitar el transporte y montaje. Suelen ser habituales las pilas octogonales o a secciones I enlazadas dos a dos para formar una sección en cajón.

También son prefabricados los dinteles colocados sobre las pilas individuales o formando pórtico con varias pilas. Pueden ser también macizos o aligerados con sección en pi.

Veamos varios vídeos al respecto.

A continuación podemos ver el montaje de un dintel prefabricado.

 

También podemos ver el montaje de un viaducto en Sot Gran, en Eix Transversal C-25. En el vídeo se ve una secuencia de fotos del montaje por parte de Alvisa de la estructura prefabricada de hormigón del Viaducto Sot Gran para el tramo Espinelves – Santa Coloma de Farners, correspondiente al desdoblamiento del Eje Transversal de la carretera C-25 (Girona – Lleida). Se trata de tres vanos de 28, 39 y 32 m de longitud, con monoviga hiperestática y pilas palmera prefabricadas de 21 m de alto y peso 170 t.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

3 octubre, 2017
 
|   Etiquetas: ,  ,  ,  |  

Mesas basculantes para la fabricación de paneles prefabricados

Mesa basculante para paneles prefabricados. Vía: Moldtech

Los paneles de hormigón prefabricado se han usado en las fachadas de los edificios desde los años 50 del siglo XX bajo el impulso de importantes arquitectos como Le Corbusier, Ropius, Aalto y otros. Desde ese momento, los paneles prefabricados de fachada han evolucionado fuertemente, con tendencia hacia unidades cada vez de mayor tamaño y peso. Hoy día se incorporan a dichas piezas el aislamiento y los acabados interiores y exteriores.

Las mesas basculantes permiten la prefabricación de estos paneles de hormigón al facilitar la basculación la extracción de las piezas. Esta basculación se realiza mediante cilindros hidráulicos telescópicos. Suelen contar las mesas con una o dos bandas laterales, que pueden ser fijas, abatibles o regulables en altura, según el tipo de panel a fabricar. Las mesas basculantes presentan un sistema de vibración eléctricos o neumáticos para la compactación del hormigón. También es posible incorporar sistemas de tuberías de calefacción para acelerar el curado del hormigón.

27 agosto, 2017
 
|   Etiquetas: ,  ,  ,  |  

La construcción con prefabricados de hormigón. Una historia por escribir

581100pilares_hormigon-prefabricadosAlejandro López Vidal y David Fernández Ordoñez acaban de publicar una reseña de gran interés sobre la construcción con prefabricados de hormigón (http://www.andece.org/IMAGES/BIBLIOTECA/historia_prefabricados_noticreto.pdf). Este artículo se ha publicado en la revista Noticentro, en su número 133 correspondiente a noviembre y diciembre de 2015. Espero que os sea interesante su lectura.

Descargar (PDF, 2.76MB)

23 junio, 2017
 
|   Etiquetas: ,  ,  ,  |  

¿Hacia dónde van los prefabricados de hormigón?

prefabricado-hormigonOs presento a continuación un vídeo de 1 hora de duración del webinar celebrado el 1 de diciembre y organizado por ANDECE y STRUCTURALIA, para por un lado presentar la situación actual del mercado, la creciente demanda de construcciones sostenibles y el encaje del prefabricado de hormigón como tecnología puntera y con un gran margen de crecimiento todavía. Espero que os sea de interés.

22 diciembre, 2015
 
|   Etiquetas: ,  ,  |  

Construcción rápida de puentes mediante elementos prefabricados

VigasOs paso a continuación un vídeo que muestra la construcción rápida de un puente mediante elementos prefabricados, incluidas las pilas. Se trata de un puente en Lagrange, Georgia. Espero que os guste.

 

19 noviembre, 2015
 
|   Etiquetas: ,  ,  |  

Previous Posts

Universidad Politécnica de Valencia