Compresor de pistón

Un compresor de pistón, compresor volumétrico alternativo o compresor de émbolo es un compresor de gases que funciona por el desplazamiento de un émbolo dentro de un cilindro (puede tener varios) movido por un cigüeñal para obtener gases a alta presión. El gas a comprimir entra, a presión ambiental, por la válvula de admisión en el cilindro, donde se comprime con el pistón, que tiene un movimiento alternativo mediante un cigüeñal y un biela, y se descarga, comprimido, por la válvula de descarga.

Es uno de los compresores más antiguos y conocidos, aunque hoy se emplean especialmente los compresores rotativos. El principio de funcionamiento del compresor alternativo, basado en el desalojamiento del aire por el émbolo, permite fabricar máquinas con pequeño diámetro y un recorrido insignificante del pistón, que desarrollan alta presión con un caudal relativamente pequeño.

Los compresores de pistones pueden clasificarse atendiendo a distintas características:

Por el número de cilindros:

  • Monocilíndricos.
  • Bicilíndricos.
  • Policilíndricos

Por la forma de trabajar el émbolo:

  • De simple efecto: la compresión se efectúa por una cara del pistón.
  • De doble efecto: la compresión se realiza por las dos caras del pistón

Por el número de etapas empleadas en la compresión:

  • Monoetápico.
  • Bietápicos.
  • Polietápicos.

Por la disposición de los pistones:

  •  Horizontales.
  • Verticales.
  • En V.
  • A escuadra.
Compresor de pistón

Los compresores monoetápicos son de poca potencia. La presión final alcanzada es de 4 a 5 bares, con una temperatura de salida entorno a los 180ºC (±20ºC). La refrigeración es por aire. Los compresores bietápicos son los más utilizados. Primero se llega de 2 a 3 bares para luego alcanzar unos 8 bares, con una temperatura de salida de 150ºC (±15ºC). La refrigeración puede ser por aire con un ventilador o por una corriente de agua.

Algunos de los compresores más habituales en el mercado presentan las siguientes características:

  • De simple efecto, monoetápicos y refrigeración por aire: capacidad hasta 1 m3/min, relación potencia (CV)/capacidad (m3/min) inferior a 10.
  • De simple efecto, bietápicos y refrigeración por aire: capacidad de 2 a 10 m3/min, relación potencia (CV)/capacidad (m3/min) de 7,5 a 8,5.
  • De doble efecto, bietápicos y refrigeración por agua: capacidad de 10 a 100 m3/min, relación potencia (CV)/capacidad (m3/min) de 6,5 a 7,5.

 

En la Figura siguiente se representan las cuatro fases del ciclo termodinámico que se desarrollan en el caso más simple de un compresor monoetápico de un cilindro de simple efecto.

  • Fase 1, admisión (4-1): Con la válvula de aspiración abierta, el pistón situado en el punto 4 inicia su avance hasta el 1 en el que se cierra la válvula. Entra aire a una presión P1.
  • Fase 2, compresión (1-2): Al cerrarse la válvula de admisión, el pistón retrocede hasta 2 y el aire se comprime hasta la presión P2.
  • Fase 3, expulsión (2-3): En 2 se abre la válvula de expulsión y el pistón al seguir retrocediendo hasta 3 va expulsando el aire y dejando el volumen V3 correspondiente al espacio muerto del cilindro.
  • Fase 4, expansión (3-4): En 3 se cierra la válvula de expulsión y el aire encerrado en el cilindro se expansiona haciendo avanzar el pistón hasta 4. En ese instante se abre la válvula de admisión, reiniciándose de nuevo el ciclo.

 

Ciclo termodinamico piston
Ciclo termodinámico de un compresor alternativo de un cilindro

Os dejo a continuación una animación sobre un compresor de pistón de doble efecto:

También os dejo una presentación del profesor Pedro Loja sobre el compresor de pistón:

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

El cigüeñal

El cigüeñal  es un árbol de transmisión, con codos y contrapesos presente en ciertas máquinas que, aplicando el principio del mecanismo de biela – manivela, transforma el movimiento rectilíneo alternativo en circular uniforme y viceversa. En realidad consiste en un conjunto de manivelas. Cada manivela consta de una parte llamada muñequilla y dos brazos que acaban en el eje giratorio del cigüeñal. Cada muñequilla se une una biela, la cual a su vez está unida por el otro extremo a un pistón. En los motores de automóviles el extremo de la biela opuesta al bulón del pistón (cabeza de biela) conecta con la muñequilla, la cual junto con la fuerza ejercida por el pistón sobre el otro extremo (pie de biela) genera el par motor instantáneo. El cigueñal va sujeto en los apoyos, siendo el eje que une los apoyos el eje del motor.

Os dejo a continuación un vídeo explicativo que espero os guste.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

Motor endotérmico rotativo

Motor Wankel en el Deutsches Museum en Múnich (Alemania). Wikipedia

Dentro de los motores de combustión interna rotativos, el motor Wankel, cuya patente data de 1936, se diferencia enormemente de los motores convencionales. Este motor tiene un 40 por ciento menos de piezas y la mitad de volumen y peso de un motor comparable a pistones. Es de diseño simple, en vez de un pistón, de un cilindro y de válvulas mecánicas, un rotor triangular que gira alrededor del excéntrico, hay muy poca vibración y no hay problemas con la disipación de calor, los puntos calientes, o la detonación, que son consideraciones en el motor convencional del intercambio.

En la figura puede observarse el funcionamiento en cuatro fases: (1) admisión de la mezcla, (2) compresión, (3) encendido (por chispa), explosión y expansión y (4) escape. Todas las fases ocurren de forma simultánea.

Motor Wankel

Las ventajas teóricas de estos motores frente a los alternativos son las siguientes:

  • Su distribución uniforme, regular y ausente de fuerzas alternativas facilita un diseño más equilibrado.
  • Su volumen es menor, así como su relación peso/potencia.
  • Ausencia de espacios muertos.
  • Inexistencia de válvulas y menor número de piezas, lo que contribuye a su simplicidad constructiva.
  • Funcionamiento continuo, dando un empuje constante, lo que teóricamente va asociado a un rendimiento más alto.

 

Sin embargo también se pueden anotar algunos inconvenientes que hacen que su empleo sea más bien escaso:

  • Problemas de estanqueidad, para no perturbar las fases del ciclo.
  • Dificultad de conseguir una eficaz refrigeración.
  • Gradientes elevados de temperatura de la zona caliente de explosión y escape (más de 1000ºC) respecto a las otras (unos 150ºC).
  • Baja eficacia en el uso del combustible y necesidad de estar perfectamente sincronizado.

Os dejo una explicación del motor rotativo (en inglés, así practicáis). Espero que os guste.

Aquí podéis ver el motor rotativo del Mazda RX8.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

 

 

 

 

Compresores móviles en obra

Compresor móvil insonorizado de 3,5 m3 a 7,5 bares
Compresor móvil insonorizado de 3,5 m3 a 7,5 bares

La primera decisión que ha de tomarse cuando se planifica una instalación de aire comprimido es saber si se establece un compresor único centralizado o una serie de unidades situadas cerca de los puntos de consumo. Si bien las centralizadas tienen las ventajas de requerir menor potencia, menores costes de mantenimiento y mayores rendimientos, en obras lineales o con conducciones muy largas se recomienda la utilización de pequeños compresores móviles.

El motor y el compresor forman una sola unidad que cuenta con un panel de mando que controla la presión y temperatura del aire, la presión del aceite, el arranque y la parada, etc. Suelen componerse de compresores alternativos (de dos etapas con uno o más pistones) o rotativos (más frecuentes de tornillo) y un motor de accionamiento. La refrigeración en los de pistones se efectúa por aire y en los de tornillo por medio de aceite. Cada toma de aire cuenta con su llave y acoplamiento normalizado a ¾”, mientras que las mangueras comunes en obras públicas tienen un diámetro inferior a los 19 mm.

Se pueden clasificar atendiendo a la potencia del motor:

  • Ligeros: con una potencia inferior a los 25 CV, aptos para una sola herramienta de tipo medio, o dos ligeras de forma intermitente.
  • Medios: con potencia de 25-50 CV.
  • Pesados: Potencias mayores de 50 CV, con capacidad para atender varias herramientas con 6 u 8 puntos de toma.

Cuando el moto-compresor alimenta varias máquinas, la presión de trabajo deberá ser la del que requiera mayor presión. El resto de equipos debe protegerse con un mano-reductor. La instalación debe estar sobredimensionada, de forma que la presión de trabajo esté un mínimo de 1.5 a 2 bares por debajo de la presión máxima. Si el caudal de aire es escaso, tanto la presión como el rendimiento disminuyen, de forma que un 20% de merma en el caudal significa una pérdida de rendimiento en los equipos del 35%. Ello implica que el caudal de aire deba ser superior al consumo de todas las herramientas más una reserva de aproximadamente un 20%. Tampoco es aconsejable dimensionarlo en exceso, pues la presión no utilizada equivale a desaprovechar la energía.

A continuación os dejo un vídeo de un compresor móvil M250 885 CFM. Espero que os guste.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

 

Historia de los motores

Un motor es la parte de una máquina capaz de hacer funcionar el sistema transformando algún tipo de energía (eléctrica, de combustibles fósiles, etc.), en energía mecánica capaz de realizar un trabajo. En los automóviles este efecto es una fuerza que produce el movimiento.

Máquina de vapor en funcionamiento.

Los orígenes de los motores son muy remotos. Especialmente si se consideran los inicios o precededentes de algunos elementos constitutivos de los motores, imprescindibles para su funcionamiento como tales. Considerados como máquinas completas y funcionales, y productoras de energía mecánica, hay algunos ejemplos de motores antes del siglo XIX. A partir de la producción comercial de petróleo a mediados del siglo XIX (1850) las mejoras e innovaciones fueron muy importantes. A finales de ese siglo había una multitud de variedades de motores usados en todo tipo de aplicaciones.

En el siguiente enlace de Wikipedia tenéis las fechas más interesanteres relacionadas con la historia de los motores: http://es.wikipedia.org/wiki/Historia_del_motor_de_combusti%C3%B3n_interna. Pero os aconsejo el siguiente vídeo, que además de entretenido, creo que os dará pistas interesantes para enteder mejor el mundo de los motores. Espero que os guste.

Los ventiladores en las instalaciones de ventilación

VentilacionEl ventilador es una turbomáquina que sirve para transportar gases, absorbiendo energía mecánica en el eje y devolviéndola al gas. En obra civil o en minería se emplean en la renovación del aire, funcionando en el medio de trabajo por impulsión o por extracción.

La ventilación cobra especial importancia en los trabajos subterráneos tales como galerías, pozos y túneles. Ésta consigue la disminución notable de enfermedades pulmonares profesionales así como un aumento sustancial de la productividad de los equipos. Además, también se emplea la ventilación durante la gestión de los grandes túneles carreteros, de forma que se consiga una atmósfera saludable para el automovilista y un aire puro que permita a los motores térmicos una marcha eficiente.

Los ventiladores son máquinas destinadas a producir un incremento de presión total del aire pequeño, con una relación de compresión de 1,1. En este caso la variación del volumen específico del gas a través de la máquina se puede despreciar, por lo que el ventilador se comporta como una turbomáquina hidráulica. Se distingue del turbocompresor en que las variaciones de presión en el interior del ventilador son tan pequeñas, que el gas se puede considerar prácticamente incompresible. Esto significa que las leyes que relacionan el caudal, la presión y la potencia de un ventilador con su velocidad de rotación son las mismas que en las bombas axiales o centrífugas.

A continuación os paso un Polimedia presentado por la profesora Petra Amparo López Jiménez, de la Universitat Politècnica de València. Allí se presentna los tipos de ventiladores y se describe importancia de las curvas de selección de los mismos, así como la determinación de su punto de funcionamiento e idoneidad para una instalación.  Espero que os guste.

Referencias:

YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J. (2012). Maquinaria auxiliar y equipos de elevación. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 200 pp. Depósito Legal: V-316-2012.