UPV



Resultados de la búsqueda By Etiquetas: maquinaria


¿Cuánto polvo levanta un dúmper al circular por una pista sin pavimentar?

En un post reciente hemos analizado las emisiones de polvo producidas al cargar un dúmper. Siguiendo esa línea os pasamos ahora un objeto de aprendizaje similar en el que se analiza el polvo que se levanta al circular un dúmper por una pista sin pavimentar. Este objeto está pensado para que nuestros alumnos traten de entender cómo varían las emisiones de polvo cuando un dúmper circula por una pista sin pavimentar, en función del contenido de limo en el material de la superficie de rodadura, de la velocidad y peso medio del dúmper, del número de neumáticos y del número de días secos anuales.  Espero que os resulte útil. (más…)
17 marzo, 2018
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  |  

Grúa torre trepadora

Grúa torre trepadora. http://eraikal.blog.euskadi.net

Las nuevas tecnologías han servido para facilitar la labor docente en la asignatura de “Procedimientos de construcción“. Aún me acuerdo cuando en los años 80 nuestro profesor Hermelando Corbí nos enseñaba catálogos de máquinas y con un proyector de opacos intentaba explicarnos el funcionamiento de algún medio auxiliar. Tarea algo complicada cuando de lo que se trata es explicar la obra en las cuatro paredes del aula. El Power point (del cual quizá se abusa demasiado), los vídeos o las animaciones en 3D han provocado tirar a la basura kilos de transparencias que, hasta hace apenas 10 años, utilizábamos como herramienta habitual en la exposición de nuestras clases.

Hoy día las nuevas tecnologías son capaces de traer las obras no sólo a clase, sino a la casa de todos y cada uno de nuestros futuros ingenieros. Como ejemplo quería mostraros un vídeo sobre el proceso de trepa de una grúa torre, proceso difícil de explicar en la pizarra o con transparencias.

La grúa torre trepadora constituye un medio auxiliar para el izado de cargas que se instala sobre la estructura de una obra en curso de construcción y que se desplaza de abajo hacia arriba por sus propios medios al ritmo y medida que la construcción progresa. Os paso un par de vídeos que espero os gusten y la referencia del libro de apuntes que usamos en clase.

 

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

8 marzo, 2018
 
|   Etiquetas: ,  ,  ,  |  

Grúa derrick

Grúa Liebherr de 750 toneladas LR 1750

La grúa Derrick es una grúa formada por un mástil de estructura de celosía sujeto por vientos, un brazo de la misma estructura unido al mástil por un extremo inferior y sujeto al mismo mediante cables por su extremo superior, un cabrestante situado en el suelo y un cable que se reenvía a través de poleas situadas en el brazo. Sobre este sencillo modelo, existen muchas variaciones, siendo la más corriente la grúa cuya base lleva ruedas y se mueve sobre ellas.

Son máquinas fijas, muy sencillas, poco costosas y de gran capacidad de carga. El tipo más usual consta de un mástil vertical fijo a una plataforma o zócalo situado en posición por medio de dos tornapuntas o tirantes que forman un tetraedro indeformable. Estas grúas se utilizan cuando hay sitio para la colocación de la base. En ella se sitúa un motor, los cabestrantes y los contrapesos. Apoyada en la base se encuentra una pluma que puede girar mediante una rótula o corona giratoria, de la cual penden las cargas.

El inconveniente de la disposición anterior es la limitación a unos 270º del giro del mástil, que no puede tropezar con los tirantes. Este inconveniente se elimina sustituyendo los soportes rígidos por 3 o más cables atirantados en forma de paraguas y haciendo que la pluma tenga una altura inferior a la del mástil.

Existen otras variantes  en la cual es posible el movimiento completo, donde el mástil no es completamente vertical. Es bastante frecuente ver diseños de este tipo incorporados a otros modelos de grúas (móviles o de puerto), con gran capacidad de carga. Pueden elevar cargas de hasta 200 t. y tener alcances de hasta 20 m.

Os paso a continuación un vídeo donde podréis ver en funcionamiento una derrick. Espero que os guste.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

18 febrero, 2018
 
|   Etiquetas: ,  ,  |  

Turbina Francis

turbin4La turbina Francis, desarrollada por James B. Francis, es una turbomáquina motora a reacción y de flujo mixto. Son turbinas hidráulicas que se pueden diseñar para un amplio rango de saltos y caudales,  capaces de operar en desniveles que van de los dos metros hasta varios cientos de metros. Esto, junto con su alta eficiencia, ha hecho que este tipo de turbina sea el más usado en el mundo, principalmente para la producción de energía eléctrica en centrales hidroeléctricas.  Son muy costosas de diseñar, fabricar e instalar, pero pueden funcionar durante décadas.

Estas turbinas presentan un diseño hidrodinámico que garantiza un alto rendimiento debido a las bajas pérdidas hidráulicas. Son robustas, con bajo costo de mantenimiento. Sin embargo, no se recomienda su instalación con alturas de agua mayores de 800 m ni cuando existen grandes variaciones de caudal. Asimismo es muy importante controlar la cavitación.

Espiral de entrada de una turbina Francis, Presa Grand Coulee.

Las partes de una turbina Francis son las siguientes:

  • Cámara espiral: distribuye uniformemente el fluido en la entrada del rodete. La forma en espiral o caracol se debe a que la velocidad media del fluido debe permanecer constante en cada punto de la misma. La sección transversal  puede ser rectangular o circular, siendo esta última la más utilizada.
  • Predistribuidor:  formado por álabes fijos que tienen una función netamente estructural, para mantener la estructura de la caja espiral y conferirle rigidez transversal, que además poseen una forma hidrodinámica para minimizar las pérdidas hidráulicas.
  • Distribuidor: constituido por álabes móviles directores, cuya misión es dirigir convenientemente el agua hacia los álabes del rodete (fijos) y regular el caudal admitido, modificando de esta forma la potencia de la turbina de manera que se ajuste en lo posible a las variaciones de carga de la red eléctrica, a la vez de direccionar el fluido para mejorar el rendimiento de la máquina. Este recibe el nombre de distribuidor Fink.
  • Rotor o rodete: es el corazón de la turbina, pues aquí tiene lugar el intercambio de energía entre la máquina y el fluido. En forma general, la energía del fluido al momento de pasar por el rodete es una suma de energía cinéticaenergía de presión y energía potencial. La turbina convierte esta energía en energía mecánica que se manifiesta en el giro del rodete. El rodete a su vez transmite esta energía por medio de un eje a un generador eléctrico dónde se realiza la conversión final en energía eléctrica. El rotor puede tener diversas formas dependiendo del número específico de revoluciones para el cual esté diseñada la máquina, que a su vez depende del salto hidráulico y del caudal de diseño.
  • Tubo de aspiración: es la salida de la turbina. Su función es darle continuidad al flujo y recuperar el salto perdido en las instalaciones que están por encima del nivel de agua a la salida. En general se construye en forma de difusor, para generar un efecto de aspiración, el cual recupera parte de la energía que no fuera entregada al rotor en su ausencia.

 

Las turbinas Francis se pueden clasificar en función de la velocidad específica del rotor y de las características del salto:

  • Turbina Francis lenta: para saltos de gran altura, alrededor de 200 m o más
  • Turbina Francis normal: indicada en saltos de altura media, entre 200 y 20 m
  • Turbina Francis rápidas y extrarrápidas: apropiadas para saltos de pequeña altura, inferiores a 20 m

 

A continuación os paso un par de vídeos explicativos que espero os sean de utilidad:

Os paso un vídeo de una Turbina Francis de la Central Hidroeléctrica de la Presa Susqueda en funcionamiento produciendo 27,5 MW por caída hidráulica de 162 m.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

12 febrero, 2018
 
|   Etiquetas: ,  ,  ,  |  

Costes de explotación en la maquinaria de obras públicas

¿Sabíais que hoy día el éxito económico de una obra pasa por la correcta gestión de la maquinaria empleada? La mecanización del trabajo en cualquier obra civil o de edificación es totalmente necesaria desde la perspectiva técnica, económica, humana e incluso jurídica. Las máquinas, que nacieron con el propósito de liberar al hombre de los trabajos más penosos, se han convertido en herramientas para producir más, más barato y con mejor calidad. Han permitido abreviar la realización de trabajos que en otros tiempos parecían imposibles y, por consiguiente, han conseguido acelerar la acción del hombre sobre su entorno más inmediato. La adjudicación de un contrato suele requerir de la empresa constructora la disposición de la maquinaria adecuada que garantice los plazos, las calidades y la seguridad de la obra. Además, determinadas unidades de obra no son factibles sin el uso de la maquinaria, tales como las inyecciones, el pilotaje, los dragados, cimentaciones por aire comprimido, etc. En otros casos, la realización manual de hormigones, compactaciones de tierras, etc., no podría satisfacer las elevadas exigencias de los pliegos de condiciones técnicas vigentes.

Las máquinas suponen fuertes inversiones para las empresas constructoras, que si bien son menores en obras de edificación, mayores en obras de carreteras e hidráulicas, son importantísimas en obras portuarias. El índice de inversión en maquinaria, calculado como la relación entre el valor anual de adquisición de maquinaria y la obra total anual, varía entre el 3 y el 13%. Se evalúa entre el 13% y el 19% el índice de mecanización -valor del parque de maquinaria respecto a la producción anual- de las firmas constructoras.

¿Cómo podemos calcular los costes de la maquinaria? Os paso un Polimedia divulgativo acerca de los costes de explotación de la maquinaria. Espero que os guste.

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5.

5 enero, 2018
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  ,  |  

Previsión de repuestos de una máquina

Para un buen funcionamiento de una máquina es necesario mantener un stock de piezas de recambio y un utillaje adecuado. Si bien mantener estas existencias significa una fuerte suma de capital inactivo, también es cierto que la falta de recambios puede suponer pérdidas importantes en la producción.

La previsión de los repuestos necesarios de un elemento de una máquina para un periodo de tiempo determinado depende de su tasa de fallos. Cuando los fallos aparecen de forma independiente, la distribución de Poisson proporciona la probabilidad de que un suceso con una tasa de fallos constante l ocurra r veces en un intervalo de tiempo t:

Formula 1

Se comprueba que para r = 1 la distribución de Poisson describe el modelo exponencial de fallo descrito anteriormente.

Para el cálculo del número de repuestos, se puede acumular la probabilidad de tener r fallos o menos en un intervalo de tiempo t:

Formula 2A continuación os dejo un Polimedia donde se explica con detalle la función de distribución de Poisson. Espero que os sea útil.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5.

2 noviembre, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  |  

Retroaraña

Retroaraña, vía: http://losrecursosdelbosque.blogspot.com

Una retroaraña (spider excavator o walking excavator) es una  retroexcavadora que presenta garras en vez de ruedas u orugas, lo cual hace que sea un máquina especialmente adaptada a orografías pronunciadas.  La araña (como se la conoce para abreviar) tiene en la parte de delante unas garras telescópicas y articuladas, y en la parte de detrás unas ruedas con unas cadenas. Cuando la máquina se traslada por terrenos llanos los hace con las cuatro ruedas, pero si éste se complica, se anulan las delanteras y se desplaza apoyándose en los brazos telescópicos en en el brazo. El brazo de grúa de una retroaraña presenta diferencias con respecto al de una retroexcavadora, pues es articulado además de telescópico. Se trata, por tanto, de una máquina muy versátil en trabajos de orografía complicada como es el caso de la repoblación de montes. (más…)

17 octubre, 2017
 
|   Etiquetas: ,  ,  ,  |  

El oficio de maquinista

Los operadores o maquinistas de las máquinas empleadas en obras públicas constituyen una pieza clave en el funcionamiento de cualquier obra. La complejidad de algunos equipos y la incidencia de la maquinaria en los costes de producción, precisan de especialistas con una formación adecuada, capacidad de trabajar en equipo y con un fuerte sentido común. No en vano, una parte importante de las medidas de seguridad en el trabajo dependen de estos especialistas.

Os dejo un vídeo realizado por Structuralia que nos ofrece un perfil de este tipo de trabajo y unos trazos respecto a sus orígenes en la historia. Espero que os guste.

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.

 

11 octubre, 2017
 
|   Etiquetas: ,  ,  ,  |  

¿Qué recomendaciones de trabajo se deben seguir en la compactación?

Rodillo compactador vibratorio de un solo tambor LSS2502. http://sinomach-hi.es/

¿Qué recomendaciones podemos dar para ejecutar correctamente la compactación de un suelo? En posts anteriores ya hemos descrito la curva de compactación, la elección de un equipo de compactación y el tramo de prueba. Ahora vamos a centrarnos en algunos consejos, espero que útiles, que permitan mejorar la productividad y la calidad de esta unidad de obra que suele presentar tantas patologías y quebraderos de cabeza. Para ello nos ayudaremos de un Polimedia que espero que os guste. Al final del post os he escrito algunas recomendaciones y algunas referencias por si os resultan útiles.

NORMAS Y RECOMENDACIONES DE TRABAJO.

  • Una vez se ha extendido el material en tongadas con espesor adecuado y con el grado de humedad determinado[1], se procede de forma ordenada a compactar, controlando el número de pases y su distribución homogénea.
  • Se pueden comentar algunas recomendaciones de “buena práctica constructiva” en relación a la compactación.
  • Antes de iniciar la construcción de un terraplén o un pedraplén, se eliminará la tierra vegetal y se excavará, si procede, el terreno para asegurar la estabilidad del macizo.
  • Cuando se espera lluvia, es importante compactar lo más pronto posible los rellenos de granos finos todavía no compactados, puesto que un material esponjado tiene gran capacidad de retención de agua.
  • Para reanudar el trabajo lo antes posible, después de una lluvia, es buena práctica la eliminación con motoniveladora de la fina capa superficial de barrillo (2-3 cm) bajo la que el resto del material aparece poco afectado.
  • Con exceso de agua procedente de precipitaciones atmosféricas, puede realizarse la desecación natural mediante oreo. Ahora bien, con terrenos finos limo-arcillosos y humedades próximas al índice plástico, se estabilizan mediante la adición de cal, cenizas volantes, escorias o arenas.

Compactador Hamm 3411

  • El riego de las tongadas extendidas, siempre que sea necesario, se efectuará de forma que el humedecimiento de los materiales sea uniforme, y el contenido óptimo de humedad se obtendrá a la vista de los resultados verificados por el laboratorio de cada caso con el equipo de compactación previsto.
  • Si se comienza la compactación por los bordes del terraplén, conseguiremos cierto efecto de “confinamiento” que ayuda a la densificación.
  • Deben solaparse los pases de compactación, para uniformizarlos, debido a que en el centro de la máquina se consigue mayor eficacia.
  • Se deben ejecutar de forma suave los cambios de dirección en la marcha y los virajes, para no arrastrar el material.
  • Es bueno dar cierto sobreancho a los terraplenes, ya que los bordes quedan siempre compactados por debajo de lo debido.
  • Los bordes de los terraplenes a veces se precisa compactarlos, con lo cual necesitamos de un tractor o grúa que remolque por dicho terraplén al compactador.
  • La superficie de las distintas tongadas deberá tener la pendiente transversal necesaria para evacuar las aguas sin peligro de erosión. Esta pendiente normalmente varía entre el 2 y el 4%.
  • Si se usa un sólo equipo, se simplifican los controles, pero a veces se utilizan dos tipos, uno de mayor rendimiento, y otro que sella la terminación de cada tongada.
  • Si se utilizan equipos vibrantes, las últimas pasadas se realizarán sin aplicar la vibración, con objeto de cerrar las posibles irregularidades de la superficie.
  • Es importante la buena nivelación de la superficie a compactar, de otro modo, las zonas deprimidas que no son pisadas por el rodillo quedarán deficientes de compactación.
  • Se suspenderán los trabajos de compactación cuando la temperatura ambiente sea inferior a 2ºC. Los terrenos congelados no pueden compactarse.
  • Sobre las capas en ejecución se prohíbe el tráfico hasta que se complete su compactación. Si ello es imposible, se distribuirá sin concentrar las huellas en la superficie.
  • Si el terraplén tuviera que construirse sobre un firme existente, se escarificará y compactará éste para procurar su unión con la tongada inmediata superior. Los productos removidos no aprovechables se llevarán a vertedero.
  • Si el periodo de tiempo transcurrido entre el extendido y la compactación es largo, puede producirse la evaporación suficiente para dar como resultado un contenido inadecuado de humedad. El material debe ser compactado inmediatamente para evitar el mayor costo de humectación.
  • Al finalizar la jornada no deben dejarse montones de material sin extender ni capas sin compactar, pues si las condiciones atmosféricas son buenas ocurre lo indicado en el párrafo anterior, pero si llueve sobre el material esponjado, a pocos finos que posea, su capacidad de retención de agua será grande y quedará la obra impracticable, con el agravante de tener que sacar y tirar dicho material, pues el periodo de tiempo que sería necesario para su oreo nunca lo permitiría la marcha de la obra.
  • Los efectos nocivos de la lluvia sobre una tongada compactada con pata de cabra pueden reducirse si, antes de caer el agua sobre ella, se ha planchado con un rodillo liso estático o vibratorio.
  • El inconveniente de los rodillos lisos respecto a la unión entre capas[2] se remedia si se pasa una grada o un arado de discos para escarificar la superficie. Antes de este proceso la superficie lisa, y con algo de pendiente, protege contra la lluvia y permite la circulación de vehículos.

Referencias:

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (1999). Prácticas de equipos de excavación, transporte y compactación de tierras. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-4036. 129 pp. Depósito Legal: V-5208-1999.


[1]La corrección de humedad es costosa y delicada, sobre todo en terrenos cohesivos. Es más fácil adicionar agua. El reducir humedad puede conseguirse mediante escarificado y volteo de las capas, dejándolas secar. A veces se recurre a métodos especiales como el sistema “sandwich”, que consiste en intercalar entre capas húmedas una capa granular para ir drenando el agua, o bien tratamientos con cal, que absorbe el resto de agua al hidratarse.

[2]Podría crearse una discontinuidad, con peligro de filtraciones. El arado de discos no debe faltar en la construcción de una presa de materiales sueltos de tipo cohesivo, ya que consigue cierto mezclado y amasado entre capas.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

15 septiembre, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  |  

¿Cómo se determina la producción de los equipos?

¿Cómo podemos averiguar la producción de una máquina en una obra? Muchas veces se cometen errores de bulto a la hora de establecer el volumen producido de los equipos por parte de los responsables de una obra. No es apropiado acudir a libros, folletos o incluso obras anteriores; tampoco es lo mismo una máquina que trabaje en solitario que un grupo de ellas que trabajen coordinadas. Cada obra tiene sus peculiaridades y es fácil cometer errores que pongan en riesgo la previsión de resultados correspondiente. En posts anteriores ya resaltamos la importancia de la productividad y del fondo horario de la maquinaria. No basta con conocer con precisión el coste horario de las máquinas, sino que es imprescindible conocer la producción de los equipos en nuestra obra para poder establecer el coste unitario correspondiente. Vamos, pues a dar una pincelada a estos conceptos. Para ello os dejo una presentación sobre la producción de los equipos que se basa en los apuntes de clase de la asignatura Procedimientos de Construcción. Espero que os guste este Polimedia divulgativo.

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5.

5 enero, 2017
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  |  

Previous Posts

Universidad Politécnica de Valencia