Altura crítica de una excavación sin entibación

En numerosas ocasiones se plantea en obra la necesidad de entibar una excavación, especialmente cuando la profundidad sobrepasa 1,20 m. Para ello os dejo una formulación basada en la teoría de Rankine donde se calcula la altura crítica anulando el empuje activo del terreno. Como veréis, esta altura solo se puede conseguir con terrenos cohesivos donde no exista nivel freático. También os dejo un par de cuadros donde aparece la resistencia a compresión simple de terrenos cohesivos y una tabla con ángulos de inclinación y pendientes de taludes en función del terreno y de la presencia de agua. Debo advertir que cuando se hace uso de tablas, normalmente se trata de modelos simplificados que, en no pocas veces, sobredimensionan enormemente los fenómenos analizados. Por eso siempre aconsejo realizar un cálculo con datos fiables para contrastar.

Descargar (PDF, 77KB)

Tabla 1. Altura máxima admisible en metros de taludes libres de solicitaciones, en función del tipo de terreno, del ángulo de inclinación de talud no mayor de 60º y de la resistencia a compresión simple del terreno.

 

Tabla 2. Inclinaciones y pendientes de los taludes, dependiendo de la naturaleza y contenido en agua del terreno

 

Referencias:

http://www.osalan.euskadi.eus/contenidos/libro/seguridad_201210/es_doc/adjuntos/Seguridad%20en%20zanjas.pdf

http://www.insht.es/InshtWeb/Contenidos/Documentacion/FichasTecnicas/NTP/Ficheros/201a300/ntp_278.pdf

http://www.lineaprevencion.com/ProjectMiniSites/Video5/html/cap-2/db-prl-mt/seccion-2-desmonte-y-vaciado-a-cielo-abierto/seccion2desmonteyvaciadoacieloabierto.html

http://www.cepymearagon.es/WebCEPYME%5Cdatos.nsf/0/BB3A397513D24B57C1257DFE0031A982/$FILE/2014-DGA-02.pdf

 

Precauciones para el montaje de la cimbra de un puente

Cimbra PERI UP Rosett
Cimbra PERI UP Rosett

La cimbra es una estructura provisional que requiere su propio proyecto y cálculo, con una especial atención a las hipótesis de carga y los detalles de diseño y montaje. No son extraños los accidentes, especialmente con las cimbras diáfanas, por no existir un proyecto adecuado. Dicho proyecto y las operaciones de montaje y desmontaje de estos elementos suele depender de una empresa especializada. Se debe exigir que la cimbra sea estable, especialmente a pandeo y que las deformaciones previstas se puedan compensar con las contraflechas necesarias.

Muchos problemas en las cimbras se encuentran en el punto de encuentro entre las torres y el encofrado, pues esta transición no está normalizada. El encuentro consta de varios niveles de perfiles o tablones apoyados sobre horquillas que, normalmente, no son solidarias con el husillo que las soporta, lo cual puede provocar inestabilidad si no se monta adecuadamente. Un ejemplo son las cargas excéntricas sobre los husillos provocada por la colocación inclinada de los perfiles originada por la pendiente del tablero, que muchas veces no se consideran en el cálculo. Otra circunstancia no contemplada en los cálculos puede ser el mal reparto de las cargas en las patas de las torres por una mala colocación de los perfiles o los tablones. Todo ello lleva a que se tengan que adoptar coeficientes de seguridad elevados, normalmente de 2 cuando las condiciones de montaje son muy estrictas, e incluso de 3, tal y como propugna la norma ACI.

Otros aspectos de gran importancia son el arriostramiento horizontal e inclinado de las torres para evitar el pandeo y para resistir las cargas horizontales. Además, una cimentación de las torres sobre tablones mal asentados o poco rígidos incrementa significativamente el asiento diferencial y el consiguiente incremento de carga no previsto en alguno de los apoyos.

Os dejo a continuación un vídeo de una cimbra cuajada T-60 y ENKOFORM HMK – ULMA. Espero que os guste la animación.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Entibaciones de madera

Entibación de madera. Fuente: http://www.construmatica.com/

 

Las entibaciones de madera están formadas por tablones, tablas y rollizos de madera, siendo muy usado el álamo negro. Se emplean como pantallas no estancas, sin presencia de agua. El proceso de excavación y entibación depende del tipo de terreno y su profundidad. Este tipo de entibación se ha sustituido actualmente mayoritariamente por entibaciones metálicas por razones económicas, pues con madera supone un coste importante en mano de obra y una mayor lentitud en su instalación. Sin embargo aún se utilizan cuando existen zanjas con muchas tuberías o conducciones transversales, o bien cuando no se puede emplear maquinaria que transporte los elementos de otro tipo de entibación hasta el tajo.

 

 

Se pueden establecer dos tipos diferentes de entibaciones de madera:

  • Entibaciones con tablas horizontales: son útiles en terrenos cohesivos, que sean autoestables al excavar. Se suele alternar la excavación cada 0,80-1,30 m con la propia entibación. La entibación se realiza apuntalando de lado a lado de las tablas con un codal o rollizo, hasta alcanzar la profundidad total.
  • Entibaciones con tablas verticales: se emplean en terrenos sin cohesión, como arenas sueltas, o incluso en lodazales. Las tablas verticales, con punta, se hincan un una maza antes de excavar. A medida que se completa la hinca, se coloca la primera correa o cabecero en cabeza de zanja y se apuntala de lado a lado. Se alcanza la profundidad en sucesivas etapas.
Entibación de madera con tablas horizontales
Entibación de madera con tablas horizontales

 

Entibación de madera con tablas verticales
Entibación de madera con tablas verticales

La entibación de madera recibe distintos nombres en función del porcentaje de superficie de excavación cubierta:

  • Entibación cuajada: cubre el 100% de las paredes de la excavación. Los tablones se sitúan uno a continuación del otro.
  • Entibación semicuajada: cubre el 50% de las paredes de la excavación. Los tablones distan entre sí unos 0,75 m.
  • Entibación ligera: cubre menos del 50% de las paredes de la excavación. En este caso los tablones distan de 1,5 a 2 m.

 

Para todas las entibaciones anteriores, se suele dejar 1 m de separación vertical entre correas o largueros y de 1,5 a 2 m en horizontal entre codales. La Norma Tecnológica NTE ADZ/1976 recomienda, en función del tipo de terreno, solicitación y profundidad de corte, los tipos de entibaciones de madera que figuran en la tabla.

 

Tipo de terreno Solicitación Profundidad P de corte en m
< 1,30 1,30 – 2,00 2,00 – 2,50 > 2,50
Coherente Sin solicitación No necesaria Ligera Semicuajada Cuajada
Solicitación vial Ligera Semicuajada Cuajada Cuajada
Suelto Solicitación de cimentación Cuajada Cuajada Cuajada Cuajada
Indistintamente Cuajada Cuajada Cuajada Cuajada

 

Asimismo, dicha norma establece la sección y separación de los elementos del tablero, cabeceros y codales.

Referencias:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. ISBN: 978-84-9048-457-9.

Muros pantalla

Cuchara bivalva para construir pantallas.

Un muro pantalla o pantalla de hormigón in situ es un tipo de pantalla, o estructura de contención flexible, empleado habitualmente en ingeniería civil. Según el Código Técnico de Edificación (CTE-DB-SE C), son elementos de contención de tierras que se  emplean para realizar excavaciones verticales en aquellos casos en los que el terreno, los edificios u otras estructuras cimentadas en las inmediaciones de la excavación, no serían estables sin sujeción, o bien, se trata de eliminar posibles filtraciones de agua a través de los taludes de la excavación y eliminar o  reducir a límites admisibles las posibles filtraciones a través del fondo de la misma, o de asegurar la estabilidad de éste frente a fenómenos de sifonamiento.

Las pantallas de hormigón armado moldeadas en el suelo nacen en los años 50 como solución para resolver los problemas que plantean las excavaciones profundas próximas a edificios y estructuras subterráneas o por debajo del nivel freático. Esta técnica de la ingeniería civil surge como una aplicación de la larga experiencia en la utilización de lodos tixotrópicos existente en el campo petrolero.

Es la tipología de cimentaciones más difundida en áreas urbanas para edificios con sótano en un predio entre medianeras, en parkings y a modo de barreras de contención de agua subterránea en túneles y carreteras. El proceso constructivo se puede dividir, de forma resumida, en las siguientes fases: construcción del murete guía, excavación de la zanja por bataches, colocación de la armadura, colocación de las juntas o encofrados laterales, hormigonado, construcción de la viga de coronación y excavación del recinto exterior. Detalles de este proceso lo podemos ver en los siguientes vídeos que os paso, que espero que os gusten.

En primer lugar veremos una explicación del profesor Vicente López Mateu, de la Universitat Politècnica de València.

Excavación del muro pantalla:

Uso del trépano cuando la cosa se pone fea:

Fresado de muros pantalla:

Izado y colocación de la armadura de un muro pantalla:

Referencias:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. ISBN: 978-84-9048-457-9.

 

 

Barrettes inyectadas (shaft-grouted barrettes)

Barrette, según la norma EN 1536:1999
Barrette, según la norma EN 1536:2011

Los “barrettes”, atendiendo a la norma EN 1536:2011, son pilotes que en planta son rectangulares, en T o en L o cualquier otra configuración similar, siempre que se hormigonen en una sola operación. Se emplean para sustentar cargas verticales y/o laterales.

A este tipo de pilotes de hormigón con extracción del terreno se les ha denominado también como pilotes rectangulares, minipantallas, módulos portantes o pilas oblongas (este último término usado en México). Este pilote se excava por métodos continuos o discontinuos (hélice, cuchara, trépano, etc), usando sistemas de contención para estabilizar las paredes de la excavación, normalmente con lodos bentoníticos o polímeros.

La construcción de este tipo de pilotes es muy parecida a la de un muro pantalla. Se realiza una excavación hasta la profundidad requerida y se rellena con un lodo tixotrópico para proporcionar soporte a las paredes. Posteriormente se coloca la armadura y se hormigona con tubos Tremie.

Este tipo de pilote perforado ofrece mayor superficie específica respecto al pilote de sección circular, lo cual permite resistir mejor las cargas verticales debido al aumento de la resistencia en fuste. Desde el punto de vista estructural, se orientan de forma que ofrezca la sección la mayor inercia en la dirección requerida, favoreciendo su comportamiento ante solicitaciones sísmicas.

Colocación de armadura en barrette. Fuente: www.bachy-soletanche.com.hk
Colocación de armadura en barrette. Fuente: www.bachy-soletanche.com.hk

 

Sin embargo, en este post nos vamos a centrar en un caso especial, de gran interés. Se trata de las barrettes inyectadas o de fricción (shaft-grouted barrettes, friction barrettes). Se trata de una cimentación no tan profunda como un pilote normal, que permite reducir el consumo de acero y de hormigón y que acorta la duración de las obras. Se trata de introducir, junto con la armadura, unas tuberías embebidas por donde se inyectará una lechada de cemento y arena a alta presión una vez el pilote ha adquirido la resistencia necesaria. Una vez endurecida esta mezcla, la formación de salientes de las paredes de los pilotes aumenta de forma significativa la fricción, y por tanto la resistencia del fuste. Este tipo de cimentación profunda se ha utilizado en edificios altos, como las Torres Petronas de Malasia, o el International Commerce Centre de Hong Kong.

icc_900x600_Bachy
Cimentación de 241 barrettes inyectadas en el International Commerce Centre (ICC), en Hong Kong. Fuente: www.arup.com

A continuación os dejo un vídeo sobre cómo se realiza la ejecución de las barrettes de fricción. Se trata de una obra en Vietnam, y desgraciadamente el vídeo no está ni en español ni en inglés. Pero creo que es interesante.

Referencias:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. ISBN: 978-84-9048-457-9.

 

Construcción de falso túnel entre pantallas

Falso túnel entre pantallas. http://ecomovilidad.net/

Un falso túnel es una infraestructura que se construye cuando un obstáculo natural de escasa altura debe ser atravesado por una línea ferroviaria o por una carretera, de forma que no resulta conveniente perforar un túnel debido al escaso recubrimiento y al riesgo de que la construcción de una trinchera convencional pueda provocar desprendimientos. En otras ocasiones, la construcción de falsos túneles se justifica simplemente en la necesidad minimizar el impacto ambiental de la vía de comunicación, especialmente cuando el trazado pasa cerca de zonas urbanas.

Una forma de construir un falso túnel consiste en ejecutar unas pantallas, bien con pilotes o con una hidrofresa. Tras esas pantallas laterales, se ejecuta la losa de cubrición para formar el techo del túnel. Una vez fraguado el hormigón de la losa, se puede proceder a trabajar bajo tierra, vaciando la caverna generada entre las pantallas y la losa, hasta el nivel del suelo del túnel. La ejecución de pantallas con pilotes consiste en hacer “taladros” consecutivos, que luego son rellenados con acero y hormigón. Si utilizamos una hidrofresa el principio es el mismo, solo que la perforación es rectangular.

Si el falso túnel se realiza a una profundidad mayor de 5-10 m es necesario ejecutar losas intermedias, para garantizar la integridad de las pantallas laterales. Este método es muy seguro, habiéndose realizado bastantes kilómetros de todo tipo de túneles, por ejemplo en Madrid, tanto de metro (línea 11 en la avenida de Abrantes, línea 1 en la Calle Congosto…) como de cercanías (Pasillo verde, Getafe…) sin incidentes a reseñar. Incluso en terrenos particularmente complicados como es la vega del manzanares este método ha dado un gran rendimiento en la ejecución del soterramiento de la M30.

A continuación os paso una animación realizada por la empresa Proin 3D para Adif del túnel ferroviario de alta velocidad Barcelona Sants-La Sagrera, conocido también como túnel del Eixample. El túnel, que une la estación de Barcelona Sants con la futura estación de La Sagrera, forma parte de la línea de alta velocidad Madrid-Zaragoza-Barcelona-Frontera francesa.Fue inaugurado el 8 de enero de 2013 juntamente con el tramo entre Barcelona Sants y Figueras-Vilafant de la LAV Madrid-Barcelona-Franciay el 9 de enero de 2013 empezó su explotación comercial por trenes de Renfe Operadora.

En la animación podemos ver la ejecución del falso túnel, tanto con pilotadoras como con hidrofresas. Espero que os guste.

Referencias:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. ISBN: 978-84-9048-457-9.

Cimentaciones mediante cajones indios

Cajon indio 2
Esquema de cajón abierto

Las cimentaciones con cajones abiertos, o cajones indios, se definen como aquellas realizadas a base de cajones abiertos por arriba y sin fondo, con su borde inferior biselado o con forma de cuchilla que se van hincando en el terreno por su propio peso o mediante lastre, a medida que se excava en su interior, mientras se recrecen sus paredes. Este proceso continúa hasta alcanzar la profundidad deseada. El cajón se fabrica total o parcialmente en su altura total a nivel del suelo. La sección de estos cajones es rectangular o circular. Este procedimiento es factible en terrenos blandos, debiendo tener precaución en el caso de excavar bajo nivel freático, de que no se produzca sifonamiento. En los casos en que sea necesario recurrir a bombas de agotamiento, las alcachofas de las mangueras se sitúan en pequeños pozos practicados en el fondo de la excavación. En el caso de no poder realizarse el agotamiento del agua, entonces se inyectan productos en el terreno para disminuir su permeabilidad.

Cajon indio 1

El rozamiento entre el elemento y el terreno circundante se puede reducir mediante una rendija anular rellena de bentonita, de un ancho entre 5 y 10 cm. Estas fuerzas de rozamiento crecen al incrementarse la profundidad, por lo que habrá que ir incrementando el peso de empuje del cajón. Una vez alcanzada la profundidad prevista, se tapona el fondo de la excavación con hormigón. Durante este proceso ha da estar garantizada en todo momento la resistencia frente al empuje hidrostático ascendente.

En el Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes del año 2000, en su artículo 674, se incluían las cimentaciones por cajones indios de hormigón armado, sin embargo, este artículo quedó suprimido posteriormente.

Cajon indio 3
Construcción de cajón abierto cilíndrico de 24 m de diámetro, con paredes de 1,20 m de espesor

Referencias:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. ISBN: 978-84-9048-457-9.

Pilote de desplazamiento

Los pilotes de desplazamiento se construyen sin extraer las tierras del terreno. Están constituidos, total o parcialmente, por elementos prefabricados que se introducen en el suelo sin excavarlo previamente mhincado13ediante un procedimiento denominado de forma genérica hinca. La introducción de un volumen adicional en el terreno produce una modificación significativa de su estado tensional.

En función del tipo y comportamiento del terreno el efecto de la hinca sobre el mismo es diferente. Así, se distingue claramente entre suelos granulares y suelos cohesivos:

  1.  En suelos granulares, la introducción de un volumen adicional hinca produce su compactación. Ello provoca, en general, una depresión en la superficie del terreno en la zona circundante al pilote.
  2. En suelos cohesivos, la hinca provoca una perturbación debido al aumento de las presiones intersticiales, el arrastre de una pirámide de suelo bajo la punta, la rotura de estratos intermedios, etc. Estas modificaciones suponen un comportamiento dependiente del tiempo del suelo cohesivo, por disipación de presiones intersticiales y, en general, su endurecimiento.

La hinca es el procedimiento de introducción de pilotes en el terreno mas antiguo –los primeros pilotes fueron de madera-. La hinca puede  realizarse con diferentes métodos o sistemas:

  • Hinca dinámica o por impacto. Se introduce el pilote en el terreno mediante una sucesión de golpes en la cabeza del mismo con unos equipos denominados martinetes o martillos. Es el método de hinca más versátil y más utilizado.
  • Hinca por vibración. Unos equipos denominados vibrohincadores. Su uso está prácticamente limitado a la hinca de perfiles metálicos, tanto de pilotes como de tablestacas.
  • Hinca por presión.
Pilotes prefabricados. Vía http://fernandeztadeo.com

Una vez hincado en el terreno, éste ejerce sobre el pilote y en toda su superficie lateral, una fuerza de adherencia que aumenta al continuar clavando mas pilotes en las proximidades, pudiendo conseguir mediante este procedimiento, una consolidación del terreno . Es por ello que la hinca de un grupo de pilotes se debe realizar siempre de dentro hacia afuera.

Existen en el mercado un buen número de tipos de pilotes  que pueden ser considerados como pilotes de desplazamiento atendiendo a los efectos que produce su introducción en el terreno. En su mayor parte, se trata de elementos prefabricados que son introducidos mediante  hinca, aunque hay otros, cuyas técnicas de ejecución son más similares a las de los pilotes de extracción que sin embargo deben ser considerados como pilotes de desplazamiento.

 Según la configuración del pilote, se pueden diferenciar dos grupos de pilotes de desplazamiento:

  • Pilotes de desplazamiento prefabricados. El pilote es un elemento estructural completamente prefabricado previamente y es introducido en el suelo  mediante hinca u otros sistemas. Dentro de este grupo están los pilotes de madera, de hormigón armado o pretensado y los pilotes metálicos.
  • Pilotes de desplazamiento hormigonados “in situ. Se introduce en el terreno mediante hinca u otro sistema, no el pilote sino un elemento auxiliar (tubo metálico con tapón en la punta o un tapón de gravas u hormigón). El hueco generado por la hinca de este elemento se rellena con hormigón fresco y armadura, generando el pilote propiamente dicho. El elemento auxiliar o parte de él puede ser posteriormente extraído. Dentro de este grupo están los pilotes de hormigón “in situ” con camisa prehincada, los pilotes de hormigón “in situ” apisonados tipo “Franki”, los pilotes roscados sin extracción de terreno y otros.

 

Un post para ampliar información sobre diseño y pruebas de pilotes prefabricados hincados podéis verlo en un artículo de Carlos Fernández Tadeo:  http://fernandeztadeo.com/WordPress/?p=2647

Os dejo a continuación un vídeo sobre la cconstrucción e hincado de pilotes de 40 x 40 cm de sección y 15,00 m de longitud en un tramo. Para mayor informacion: www.cimentacionesaplicadas.com

Referencias:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. ISBN: 978-84-9048-457-9.

Control de ejecución en cimentaciones

El control de ejecución de una obra es un aspecto fundamental que garantiza la durabilidad y el funcionamiento según el proyecto previsto. Un aspecto especialmente importante es el control de ejecución de las cimentaciones. En este post os dejo información al respecto.

Un enlace muy interesante que trata sobre el control de la ejecución de las cimentaciones superficiales es de Enrique Alario:  http://www.enriquealario.com/ejecucion-de-cimentaciones-superficiales/

Os paso un Polimedia de la profesora Esther Valiente relacionada con el control de calidad en la ejecución de las cimentaciones. Espero que os guste.

También lo tenéis en inglés:

Referencias:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. ISBN: 978-84-9048-457-9.

Pilote de extracción con fluidos estabilizadores

CPI-6Los pilotes perforados sin entubación con fluidos estabilizadores, denominados CPI-6 en la nomenclatura de las NTE-1977, permiten excavar en terrenos inestables o con nivel freático alto, debido a las propiedades expansivas y tixotrópicas de los fluidos empleados, que ayudan a contener las paredes. Estos fluidos presentan propiedades tixotrópicas en la bentonita y propiedades iónicas en los polímeros.

Los fluidos estabilizadores pueden ser utilizados para estabilizar la excavación en toda su altura o bien una parte. Durante la construcción del pilote el nivel de lodos debe mantenerse en un nivel apropiado, siempre por encima del nivel freático al menos de 1,0 a 1,5 m. Este procedimiento es aplicable de preferencia en terrenos finos sin estratos granulares gruesos libres de matriz fina o grandes bloques.

Una vez acabada la perforación, se introduce la armadura y se hormigona utilizando la tubería tremie hasta el fondo de la perforación. La tubería se va subiendo a medida que se hormigona, procurando que su boca inferior esté embebida un mínimo de 4 m dentro de la columna ya hormigonada para evitar posibles cortes durante el hormigonado. La consistencia del hormigón debe ser fluida. Durante el hormigonado deben controlarse nuevamente las características de los lodos de bentonita para evitar contaminaciones en el hormigón. Los diámetros utilizados en este tipo son, según la NTE, de 45 a 125 cm, aunque la maquinaria actual permite pilotes de diámetros mayores.

Se pueden alcanzar profundidades superiores a 50 m, en función de las características del Kelly telescópico que sostiene la herramienta de perforación. Sin embargo hay que tener en cuenta la complicación que supone el uso de lodos bentoníticos a medida que aumenta la profundidad.

Su uso es habitual como pilotaje trabajando por punta, apoyado en roca o capas duras de terreno. Cuando se atreviesen capas blandas que se mantengan sin desprendimientos por efecto de los lodos.

Fases de ejecución:

  1. Excavación con cuchara y vertido de lodo en la excavación para extracción de la tierra.
  2. Cambio de lodo contaminado y limpieza del fondo del pilote
  3. Introducción de las armaduras.
  4. Hormigonado desde el fondo mediante tubo Tremie y recuperación del lodo.
  5. Pilote terminado.

 

 

Fases CPI-6

Para garantizar la estabilidad de la perforación, el nivel del lodo debe estar siempre próximo al nivel de coronación del murete-guía, debiéndose mantener constante, por lo que es preciso aportar lodos a medida que se excava el terreno. Además, se precisa una central de tratamiento de lodos que permita el control de la calidad de los lodos (mediante su viscosidad y contenido en finos) y la regeneración de los lodos contaminados.

Imagen1

Para la perforación y extracción de tierras se utilizan cucharas, barrenas cortas o buckets. Los restos de la excavación se van depositando en el fondo de la misma, por lo que es fundamental la limpieza de la punta del pilote. Para su limpieza se utilizan bombas de fondo que permiten la extracción del lodo contaminado y la incorporación de lodo regenerado. Pueden emplearse para ello sistemas de circulación directa que introducen lodos frescos por la punta que desplazan al lodo contaminado, que sale por la cabeza, o sistemas de circulación inversa que lo hacen aspirando el fango contaminado del fondo y alimentan con fango fresco por la cabeza.

A continuación os dejo un vídeo explicativo de la construcción de este tipo de pilotes.

Referencias:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.