Home » TIPOLOGÍAS DE OBRAS Y PLANTEAMIENTOS CONSTRUCTIVOS » Obras de edificación, cimientos y estructuras
Category Archives: Obras de edificación, cimientos y estructuras
Puente atirantado de Castilla-La Mancha

El puente de Castilla-La Mancha es un puente atirantado que se alza sobre el río Tajo, en Talavera de la Reina (Toledo). Se construyó desde el 2007 al 2011, destacando sus 192 metros de altura. El tablero tiene continuidad en un viaducto de acceso de 408 metros de longitud conformado por 9 vanos y dos únicos cajones de hormigón blanco gemelos. Es un puente que, en estos momentos, destaca por su poco tráfico.
Para ampliar datos sobre este puente, os remito al blog mosingenieros.com. Os dejo a continuación el vídeo presentación de este puente, donde se explica el proceso constructivo en 3D (voxelstudios).
Proceso constructivo del puente Danjiang en Taiwan

A continuación os dejo una animación detallada del proceso constructivo del Puente Danjiang en Taiwan, el puente atirantado más largo del mundo, diseñado por Zaha Hadid Architects con la colaboración de Leonhardt, Andrä & Partner y Sinotech Engineering Consultants.
El diseño del puente minimiza su impacto visual, utilizando un solo mástil de hormigón estructural, para soportar la carretera de 920 m de largo, la red ferroviaria y el paseo peatonal, construidos en acero.
El vídeo ha sido realizado por MIR y Morean.
Construcción sismo-resistente: las claves de los edificios chilenos
¿Por qué los edificios chilenos modernos se comportan tan bien frente a los sismos? La calidad de la tecnología antisísmica empleada en las edificaciones chilenas, que permitió que solo un 1 % sufriera daños estructurales durante el terremoto del año 2010, el sexto más grande del mundo, ha impulsado el interés de varios países de la región por estos dispositivos. En estructuras de hasta 18 pisos se utiliza el aislamiento sísmico, que permiten interrumpir la estructura en su conexión a nivel del suelo y generar una interfaz para que el movimiento sísmico no se propague hacia la estructura. En cambio, en las construcciones de mayor altura se emplea la disipación de energía, que aprovecha el movimiento de la estructura para conectar entre dos puntos un sistema que disipe la energía producto de la deformación relativa de éstos.
Os dejo esta entrevista de televisión al decano de ingeniería de la Universidad Católica de Chile Juan Carlos de la Yera. Es muy ilustrativa e interesante.
También os paso un vídeo explicativo al respecto.
Proceso constructivo del nuevo puente sobre la bahía de Cádiz
El Puente de La Pepa, diseñado por el ingeniero Javier Manterola, será uno de los puentes europeso de mayor altura con un gálibo de 69 m y 3,15 km de longitud total. Será un puente atirantado con unas torres que tendrán 180 m de altura. Dará acceso a la ciudad de Cádiz desde el continente, en el término de Puerto Real, convirtiéndose en el tercer acceso a la ciudad, junto con el istmo a San Fernando y el Puente Carranza. Será un puente de gran capacidad de comunicaciones, con tres carriles de autovía por sentido y dos vías férreas, por las que transitará el Tranvía Metropolitano de la Bahía de Cádiz.
Su construcción ha sido contratada a la Unión Temporal de Empresas (UTE), formada por Dragados y DRACE (Construcciones Especiales y Dragados). El proyecto tiene un presupuesto de 273 millones de euros, y su plazo de ejecución se estimó en su momento en 42 meses. Sin embargo, diversos problemas económicos están retrasando la obra. (más…)
Puente de San Pablo (Cuenca)
El puente primigenio de San Pablo se construyó entre 1533 y 1589 por orden del canónigo Juan del Pozo para comunicar el Convento de San Pablo y el casco urbano de Cuenca, a su paso por el río Huécar. Elefante de cinco patas, como le llamó Pío Baroja, este puente era de piedra con cinco arcos apoyados sobre cuatro pilares, de los que aún quedan algunos restos. Tantos años para construir dicho puente explica la cantidad de maestros que pasaron por la dirección de sus obras como Francisco de Luna, Andrés de Vandelvira, Juan Gutiérrez de la Hoceja, también a Juan de Palacios, seguido de Hernando de Palacios y, finalmente, Juan de Meril. Sin embargo, el hundimiento progresivo de las pilas fue provocando la rotura sucesiva de arcos. El puente de piedra se viene abajo en 1786, en la parte más próxima a la catedral y, aunque en 1788 fue reparado por el arquitecto Mateo López, no se logró impedir el desmoronamiento del segundo arco. Su último episodio, en 1895, llevó a tomar la decisión de su total demolición.

Pasaron los años y fue el Obispo Wenceslao Sangüesa y el Seminario Conciliar de San Julián los que toman la decisión de poner los fondos para construir un nuevo puente San Pablo. El actual nuevo puente es metálico y de madera. Empezaron sus obras en 1902, proyectadas por el ingeniero de caminos valenciano José María Fuster y Tomás, y erigido por George H. Bartle, cuya fundición, también valenciana, contaba con gran renombre por aquella época, quedando inaugurado el 19 de abril de 1903. El puente presenta 60 m de longitud, elevado 40 m y apoyado en los pilares de arranque de sillería del puente anterior y, en el centro, en un puntal de hierro. Parte del patrimonio de la ciudad de Cuenca, es uno de los mejores lugares desde los cuales observar las Casas Colgadas.

Os dejo un vídeo de Florián Yubero sobre el puente
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.
Ejecución de una losa postesada en edificación
Los forjados de losa postesa o forjados postensados son forjados que han sido elaborados mediante la técnica de tesar cables de acero (armadura activa), después del fraguado del hormigón y cuando éste ha alcanzado una resistencia suficiente para soportar las tensiones provocadas por dicho tesado. Se requieren hormigones y aceros de alta resistencia. Como consecuencia del trazado curvo de los tendones también aparecen fuerzas de desviación que pueden llegar a equilibrar el peso propio de la estructura, las cargas muertas e incluso parte de las sobrecargas. Existen dos variantes de la técnica: armadura postesa adherente y armadura postesa no adherente. Para forjados de edificación se suelen emplear armadura no adherente, por lo estricto de los cantos y por la facilidad de montaje. Este tipo de losas se utilizan en estructuras de edificios en altura, estructuras por debajo de la cota de rasante, cimentaciones por losa, parkings, puentes, depósitos, estructuras de edificaciones industriales, etc.
Algunas de las ventajas del uso de estos sistemas son las siguientes:
- Reducción de los materiales de construcción ( hasta un 40% de hormigón y un 75% de acero).
- La reducción de peso de la estructura permite reducir el espesor y el armado de la losa de cimentación.
- Aumento de altura libre entre plantas al reducir a la mitad el canto de la losa comparado con un forjado tradicional.
- Continuidad estructural que permite un menor número de juntas de hormigonado y dilatación, asi como una mayor integridad estructural.
- Reducción considerable del número de pilares y aumento de los vanos.
- Evita la aparición de fisuras y es impermeable al estar el hormigón comprimido.
A continuación os dejo un vídeo donde se explica la ejecución de una losa postesada en un edificio de viviendas en Madrid. El proyecto de la estructura se debe a la empresa CALTER INGENIERÍA.
Construcción de las torres Puerta de Europa de Madrid
Las dos torres gemelas, que conforman la llamada “Puerta de Europa”, se inauguraron en 1996. Más conocidas como las torres KIO, es un proyecto de los arquitectos estadounidenses Philip Cortelyou Johnson (Cleveland, Ohio, EE.UU, 1906 – New Canaan, Connecticut, EE.UU., 2005) y John Henry Burgee (Chicago, Illinois, EE.UU, 1933). Las Torres KIO son dos torres de cristal, granito y metal, inversamente simétricas, destacando su inclinación de 15º respecto a la vertical. Constituyen los primeros rascacielos inclinados que se edificaron en el mundo, con una altura de 115 metros y 26 plantas. Están situadas, en la Plaza de Castilla de Madrid, próximas al centro financiero de AZCA.
La solución estructural es singular, la inclinación de ambos edificios se ha conseguido mediante acero estructural, unido a un núcleo rígido, una caja prismática de hormigón armado que alberga las escaleras y ascensores. Para contrarrestar el empuje de los pisos hacia el lado inclinado, un sistema de cables une la parte alta del edificio con un contrapeso subterráneo de hormigón ubicado en el lado opuesto.

Aunque su construcción comenzó en 1989, por los sucesivos paros en las obras debidos a motivos económicos, no se inauguraron hasta 1996. Os dejo un vídeo donde se explica la construcción de estos edificios singulares. Espero que os guste.
Construcción mediante encofrados túnel
Un encofrado tipo túnel sirve permite la construcción rápida e industrializada de estructuras de hormigón armado mediante placas verticales (muros) y placas horizontales (losas) que permite estructuras de gran resistencia y rigidez lateral. Entre las ventajas de este sistema se pueden señalar la rapidez en la construcción y su relativa economía, con encofrados de acero en forma de “U invertida”; aunque en viviendas, la distribución de espacios, instalaciones, etc. deben planificarse con cierto detalle.
Dejo a continuación unos cuantos vídeos explicativos del sistema. Espero que sean de vuestro interés.